
Abstract—The high complexity, connectivity, and data ex-
change of modern software systems make it crucial to consider
confidentiality early. An often used mechanism to ensure confi-
dentiality is access control. When the system is modeled during
design time, access control can already be analyzed. This enables
early identification of confidentiality violations and the ability to
analyze the impact of what-if scenarios. However, due to the
abstract view of the design time model and the ambiguity in
the early stages of development, uncertainties exist in the system
environment. These uncertainties can have a direct effect on the
validity of access control attributes in use, which might result in
compromised confidentiality.

To handle such known uncertainty, we present a notion of
confidence in the context of design time access control. We
define confidence as a composition of known uncertainties in
the environment of the system, which influence the validity
of access control attributes. We extend an existing modeling
and analysis approach for design time access control with our
notion of confidence. For evaluation, we apply the notion of
confidence to multiple real-world case studies and discuss the
resulting benefits for different stages of system development.
We also analyze the expressiveness of the extended approach in
defining confidentiality constraints and measure the accuracy in
identifying confidentiality violations. Our results show that using
the notion of confidence increases expressiveness while being able
to accurately identify access control violations.

Index Terms—software architecture, design time, access con-
trol, uncertainty, known unknowns, confidence

I. INTRODUCTION

Modern distributed software systems, like Internet of Things
(IoT), use and process data of the involved entities. As data
might flow between different organizations or jurisdictions,
there is much concern about unauthorized access of data.
The high flexibility, complexity, and amount of data exchange
in, for example, Industry 4.0 or Industrial Internet of Things
(IIoT) systems makes it crucial to be able to ensure confiden-
tiality [23]. A common measure to ensure confidentiality are
access control mechanisms that authorize access or processing
of data. In the early stages of the development process,
making the right design decisions is crucial, as changes during
subsequent stages are often more costly [3]. To already ensure

confidentiality in early stages of system development and
reduce potential future cost, design time models of the system
can be analyzed to identify access control violations [25].

Depending on the underlying access control model, various
sources of information are used to determine whether access is
granted. Services use different sources, e.g., sensors, to acquire
information. Services process the information and provide a
resulting access control attribute, e.g., a role or location, that
can be used by the access control system. However, these
services introduce a degree of uncertainty to the access control
system. This uncertainty results from influencing factors of the
environment when acquiring the information. The influence of
the factors on the access control system can result in reduced
validity of statements about confidentiality. Depending on
the system design, software architects or security experts
might already be able to identify potential influencing factors.
For example, the ability of a GPS service to provide an
accurate position is highly dependent on its surroundings, like
buildings. However, it might not be possible to fully estimate
the actual characteristic or value of the factor, especially during
early stages of development. As we know that these factors
exist, but have only limited knowledge about the factor itself,
they represent so-called known uncertainty [20].

While there already exist some approaches that enable the
representation of access control during design time (e.g. [4,
14, 15, 25, 29]), there is a lack of design time approaches that
provide a way of representing the associated known uncer-
tainty. The lack of information reduces the quality in which the
model represents the system under construction. This results
in less accurate or even wrong predictions, made on the basis
of the model. Taking the described known uncertainty into
account increases the expressiveness in defining confidentiality
constraints within the context of an analysis.

In this paper, we present an approach for handling known,
environmental uncertainty in access control during design
time. To this end, we enable the explicit representation of the
known uncertainty and integrate the additional knowledge into
an analysis. Our main contributions are:
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C1 We propose a notion of confidence in the validity of ac-
cess control attributes, based on three types of influencing
factors of the system environment.

C2 We propose an access control analysis process for de-
sign time models that integrates confidence into model
creation and constraint definition. We propose the use of
Fuzzy Inference Systems (FIS) [17] to combine influenc-
ing factors to a resulting confidence value.

This paper is structured as follows: In Section II, we discuss
related work. Section III presents a running example. In
Section IV, we describe how we identify types of environ-
mental factors and define our notion of confidence. Section V
describes the extension of the existing design time access
control analysis approach. Section VI presents the evaluation
and discussion of the results. Section VII concludes the paper.

II. RELATED WORK

In this section, we discuss related work within the field of
design time uncertainty and access control.

Troya et al. [27] provide a survey of the uncertainty rep-
resentation in software models. They summarize definitions,
notations, and application domains of existing publications.
Within their taxonomy of uncertainty, our approach can be
classified as measurement uncertainty. They also state, that
fuzzy set theory is commonly used to represent measurement
uncertainty, which aligns with our approach.

Approaches that consider uncertainty during design time
often cover the handling of uncertainty regarding architectural
design decision-making. The impact of design decisions on a
system’s properties (e.g., security, scalability, etc.) is difficult
to estimate, as in early stages of development, decisions are
often made under uncertainty. To aid software architects in
making informed decisions, there exist approaches regarding
the design space exploration under uncertainty [9, 30]. As pre-
cisely quantifying the impact of design decisions is often not
possible, Esfahani et al. [9] apply fuzzy logic. However, they
only focus on uncertainty of the structure of the design time
model and do not explicitly consider access control. While
Walter et al. [30] are explicitly concerned with confidentiality
and access control, they also only focus on uncertainty of the
system structure.

Existing approaches regarding uncertainty in access control
also utilize fuzzy logic, e.g., to represent security patterns [12]
or to create a risk-adaptive access control model to cope with
the uncertainty of risk [6]. However, these approaches cover
other kinds of uncertainty or cover it in a more generalized
way that can not be directly utilized to analyze confidentiality.
In the field of access control, there exists a magnitude of
approaches. Only a few take the described known uncertainty
into account when making access decisions [1, 7]. However,
these approaches do not allow the representation of multiple
uncertainties or a way to define and analyze access control
constraints during design time.
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Figure 1: Change in accuracy of Visitor’s GPS location.

III. RUNNING EXAMPLE

In this section, we introduce a running example. The example
is based on a scenario where GPS positioning is used to derive
location attributes for access control. The scenario revolves
around a company, that has a dedicated research laboratory.
We identify three actors:

Scientist: An actor who works in the laboratory and has
exclusive access to the room.

Worker: An actor working for the same company as the
scientist. In the meeting room waiting for the visitor.

Visitor: An actor that is not affiliated with the company but
has a meeting with the worker in the meeting room.

In the scenario, a database exists, that is composed of sensitive
research data. To enhance security, access to the database
is only permitted if the accessing actor is located inside
of the laboratory. The location of each actor is monitored
using a GPS location service. To obtain the location of the
worker and scientist, the location services communicate with
their respective high-sensitivity GPS sensors (HSGPS). To
obtain location information of the visitor, the location service
communicates with the embedded GPS sensor of the visitor’s
mobile phone. For this example, we focus on the differences of
running the two types of GPS sensors indoors [16]. Initially,
the visitor is outside of the building, while the worker and
scientist are inside. Once the visitor enters the building, the
signal attenuation increases which results in a reduced signal-
to-noise ratio (SNR). A reduced SNR increases the time
needed to acquire satellite data and calculate a position (time
to first fix, TTFF), and the amount of positioning errors [16].
While the HSGPS sensors of the worker and scientist are
powerful enough to provide accurate positioning, the accuracy
of the embedded GPS sensor of the visitor’s mobile phone
suffers when used inside, which leads to uncertainty regarding
the actual position. The circles, shown around the actors in
Figure 1, indicate the position that is estimated by the GPS
sensors. As can be seen by the dashed line circle around the
visitor, the reduced accuracy introduces uncertainty about the
position. Deriving a location from this supplied position could
place the visitor in the meeting room, laboratory, or outside.
However, falsely placing the visitor in the laboratory, breaks
the described security measure and theoretically grants the
visitor access the laboratory database.
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Figure 2: Excerpt of a trust chain, which incorporates types
of factors for a GPS location example.

IV. DEFINING CONFIDENCE FOR ACCESS CONTROL

In this section, we draw conclusions about influencing factors
and derive our notion of confidence, which tackles C1.

Hu et al. [13] provide a definition and considerations regard-
ing attribute-based access control (ABAC). As a consideration,
they describe a trust chain, concerning the attributes used to
make access control decisions. Trust chains help determine the
ownership of information and services, as well as requirements
for technical solutions to establish valid trust relationships.
The predicate of a trust relationship revolves around the
idea that the access control system can trust the validity or
correctness of the information, supplied by the owner, e.g., an
authorization service. Depending on the access control model,
many trust relationships are required to achieve a properly
working access control system. Figure 2 shows a trust chain
of a location attribute. The subject attributes have a trust
relationship with the location service, which in turn has a
trust relationship with the location source. As indicated by
the additional arrows, the trust relationships are impacted by
influences of the environment of the system.

Ardagna et al. [1] define a confidence value that combines
the service used for location determination and environmental
conditions. Similar to the trust of Hu et al. [13], confidence
describes the certainty that a location is valid, which is
dependent on the environment. The spatial context definition
of Cuppens and Miege [7] precisely combines the hardware
and software architecture and the environment as an additional
condition for access control. Based on the work of Hengartner
and Zhong [11] we can identify environmental factors that
influence the uncertainty in access control. These factors can
be applied to access control attributes, align well with the idea
of trust relationships of Hu et al. [13] and can be represented
in software architecture. These environmental factors are:
Source: The source that is used by the service to obtain

information that is needed for the access control attribute.
Location information, for example, might be derived from
a physical access control mechanism or GPS data. Each of
these sources has a different margin of error or accuracy.

Natural Factors: The nature factors that either influence the
source’s or the service’s ability to return correct informa-
tion or attributes. Depending on the sensitivity and rating,
the accuracy with which GPS sensors can determine a lo-
cation is heavily influenced by the physical environment,
e.g., surrounding buildings [16], and weather conditions,
e.g. cloudy sky [1].

Age: The age of an attribute, which depending on the un-
derlying information might degrade validity. Depending
on the attribute, age can be a combination of the time it
took to gather the information from the source, the time

it takes to process the information to an access control
attribute and the overall time that has passed since this
access control attribute has been created.

The previously described factors and the associated uncer-
tainties are all known, but especially when multiple factors
need to be combined, their influence on the validity of an
access control attribute is hard to describe. To provide a
way of representing this known uncertainty, we define our
notion of confidence in the validity of access control attributes.
Confidence combines the known uncertainty of environmental
factors to a single value, which represents the level of confi-
dence that a corresponding attribute is valid. We further define
that confidence and the known uncertainty are not directly
associated with an access control attribute, but rather with
the service that is used by the system to derive the attribute.
A service uses a source to receive information. The service
processes this information into an attribute and provides it to
the access control system.

The factors in our running example (SNR, TTFF, amount of
positioning errors) decrease the overall accuracy and thereby
influence confidence. The SNR mainly depends on the natural
environment of the GPS sensor and can be regarded as a
Nature Factor. The TTFF describes the time needed to acquire
satellite data and calculate a position, which aligns with the
description of Age. The amount of positioning errors depends
on the computing power and design of the used sensor. As
the sensors are the source of the services, the amount of
positioning errors can be regarded as the factor type Source.
An increase in any of the three described factors might reduce
confidence in the location attribute. In our running example,
the SNR outside and inside is the same for both, the HSGPS
and embedded mobile GPS sensor. However, for the more
powerful HSGPS sensors, the TTFF and amount of positioning
errors do not increase as drastically with an increase in SNR,
compared to the mobile GPS sensor. This results in high
confidence in access control attributes, that are derived by
services that use the HSGPS sensors, and low confidence in
access control attributes derived by services using the mobile
phone GPS sensor.

V. EXTENDING ARCHITECTURE-BASED ACCESS CONTROL
ANALYSIS

In this section, we first describe our approach to calculating
confidence using Fuzzy Inference Systems (FIS) [17]. To
accomplish this, we create a FIS metamodel to represent
acquired factors and define calculation rules. Secondly, we de-
scribe how we extend the design time confidentiality analysis
process of Seifermann et al. [25], to create an access control
analysis process, that integrates confidence, which tackles C2.

A. Calculating Confidence from Factors

For over two decades, fuzzy sets and fuzzy logic have been
used to describe uncertainty [17]. Fuzzy logic is also already
used in related work regarding design time uncertainty and
uncertainty in access control [6, 9, 12, 27].
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Figure 3: Class diagram excerpt of the FIS metamodel.

For our approach, we propose the use of FISs [17], to
combine factors to a resulting confidence value. A FIS is made
up of four main components [17]: 1) Fuzzifier, 2) Defuzzifier,
3) Fuzzy Inference Engine, 4) Knowledge Base. A fuzzifier
first translates the crisp values of environmental factors into
fuzzy values, by applying them to a set of membership
functions. The fuzzy inference engine uses the fuzzy input
from the fuzzifier and created rules to infer a fuzzy output.
The defuzzifier translates the fuzzy output of the inference
engine to a confidence value, by aggregating the fuzzy out-
puts. We implement a FIS metamodel as a way to enable
software architects to create FISs, which is independent of
existing tools.Figure 3 shows an excerpt of the class diagram
representation of the FIS metamodel. We represent the envi-
ronmental factors as fuzzification functions, which are made up
of membership functions. Each membership function defines a
fuzzy set and represents a linguistic value the environmental
factor can take on. The corresponding membership functions
define a degree of membership to the fuzzy set within an
interval of [0, 1]. Using the value of the environmental factor,
e.g. 30% SNR, the fuzzifier calculates a degree of membership
for each fuzzy set of the associated fuzzification function. In
our running example, the SNR can take on the linguistic values
of ‘low’, ‘medium’, and ‘high’. The linguistic values of age
are ‘new’ and ‘old’. As an example the environmental factor
values of 30% SNR would result in the membership degree of
0 for ‘high’, 0.75 for ‘medium’, and 0.5 for ‘low’. 3 minutes
of age would result in the membership degree of 0 for ‘new’
and 1 for ‘old’. Rules to combine the environmental factors are
defined by combining a linguistic value of each environmental
factor and defining a result. A rule, which combines the most
negative linguistic values of SNR and age and consequently
results in ‘low’ confidence is defined like this: IF SNR is ‘low’
AND age is ‘old’ THEN confidence is ‘low’. Depending on
how the FIS is set up, the membership degrees of the linguistic
values of a rule are combined. The result of the rule with the
highest combined membership degrees is returned.

We chose to use FISs for our approach, as they have positive
properties described in the following, which we take advantage
of. Klir and Yuan [17] describe that through fuzzification
an enhanced ability to model real-world problems is gained,
lowering overall solution cost. The use of fuzziness also serves
to better capture human common-sense reasoning and deci-
sion making [17, pages 32f.]. When setting up a calculation
rule in general, the system’s properties and environment are
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Figure 4: Data flow diagram of the running example.

abstracted and simplified. As a result, information about the
inputs and their influence on the result is lost. A FIS conserves
more knowledge about the inputs and their influence on the
calculated confidence value than a conventional mathematical
function by mapping inputs to membership functions and
working with natural language concepts. Additionally, a FIS
is capable of capturing the meanings of sentences in natural
language [17, p. 32f.], which enables, e.g., a software architect
or security expert to easily map statements or requirements
about the influence of environmental factors on confidence, to
calculation rules.

We implement a model-to-text transformation, which creates
a textual representation of a FIS model instance. To run a FIS
instance, we import the created textual representation using
fuzzy logic control libraries. For our implementation, we use
the FuzzyLite Libraries for Fuzzy Logic Control [22].

B. Applying Confidence to Access Control Analysis

To implement our calculated confidence in a design time
access control analysis, we chose to extend the existing
approach of Seifermann et al. [25]. They utilize the data flow
diagram (DFD) notation of DeMarco [8] and extend the syntax
with confidentiality-related information. Most notably, they
define characteristics, which represent properties or attributes
of a node or data. Each characteristic has a characteristic
type. The characteristic type specifies a set of fixed value
properties or attributes, called labels. Each property or attribute
a characteristic represents is represented by a label of the
characteristic’s characteristic type. Additionally, they add a
data processing behavior definition that can be assigned to
any kind of node in the diagram. Processing behavior defines
how attribute labels are changed if data flows through a node.
An automated model transformation translates the DFDs to a
Prolog logic program. The resulting program is analyzed for
violations against access control requirements using queries
that propagate labels along the data flows. As confidence is
directly related to such attributes, we extend characteristics
by adding confidence labels. In the same way, we extend
characteristic types by adding a set of possible confidence
labels for a corresponding characteristic. Figure 4 shows an
extended DFD representation of the situation in our running
example. The visitor has entered the meeting room and the
worker and visitor try to read from the laboratory DB. The



highlighted edges are the data flows that should be identified
as violations. Conventional analysis approaches, like the one of
Seifermann et al. [25], are only able to identify the data flow
to the worker as a violation, as the visitor has the required
laboratory label. However, by comparing the attribute and
confidence label pairs of the laboratory DB with the attribute
and confidence pairs of the actors, both data flows can be
correctly identified as violations.

To realize an analysis that takes confidence into account,
we extend the underlying DFD metamodel, the semantics
of the DFD to Prolog transformation, and modify the syn-
tax of the resulting Prolog logic program. We extend the
DFD metamodel, by adding a FIS to each characteristic
and defining an additional set of possible confidence labels
for the corresponding characteristic types. We further extend
the data processing behavior definitions to also define how
confidence labels are changed during data flow. During the
transformation, the FIS calculates the actual confidence label
of the corresponding characteristic. The resulting confidence
labels are transformed to Prolog similar to how attribute labels
are transformed. The syntax of the Prolog program is modified
in a way, that every logic statement that included attribute
labels also includes a corresponding confidence label. The
code of our extension of the analysis process, including the
FIS metamodel, the extension of the DFD metamodel, and
the modified DFD to Prolog transformation, is available in
our replication package [5].

VI. EVALUATION

This section describes the used case studies, evaluation design,
and results, as well as the threats to the validity of our
approach. We chose a case study-based evaluation, as it is
commonly done for design-time security approaches. Also,
case studies can show the applicability and enable compa-
rability between different approaches [28].

A. Case Studies for Evaluation

We reuse the six case studies that were used by the original
confidentiality analysis approach of Seifermann et al. [25].
Three of the case studies represent the RBAC model and
were originally described as part of the iFlow approach by
Katkalov et al. [15]. The three remaining case studies represent
the Discretionary Access Control (DAC), Mandatory Access
Control (MAC), and Attribute-Based Access Control (ABAC)
models. For more detailed information Seifermann et al. [25]
have created a data set, which contains detailed descriptions
of the case studies and examined scenarios.

As the described case studies do not include information that
can be interpreted and used to calculate confidence, we need to
extend the existing case studies. Therefore we add real-world
environmental factors that are comprehensible and consistent
with the case study description. We extract exact values for
these environmental factors that produce a potential issue
from existing research. As the research regarding real-world
environmental factors, without any background knowledge,
is very time-consuming, it would have to be done for each

case study individually to be consistent. We base most of our
evaluation on the ABAC case study and our running example
(see Section III), which aligns with DAC case study.

The ABAC case study describes a banking system, which is
deployed in the USA and Asia. Actors in the case study can
be Clerks or Managers. Clerks can register customers, look
them up and determine a credit line. Managers can additionally
also register celebrities, or move customers between regions.
Seifermann et al. [25] define four attribute labels, which are
used to annotate the DFD and define access control goals:
1) The Role of an actor, e.g. Clerk, Manager. 2) The Location
of an actor, e.g. USA, Asia. 3) The Status of a customer,
which data is processed, e.g. Regular, Celebrity. 4) The Origin
of the customer data, e.g. USA, Asia. To add our notion of
confidence and cover all aspects of the model, we derive two
main scenarios from the described case study. The first covers
the confidence in the Role attribute of the actors. The second
scenario covers the confidence in the Location attribute of the
actors. Due to space constraints, we only describe the second
scenario, which covers confidence in the Location attribute, in-
depth. However, we have created a dataset [5], which contains
descriptions and illustrations for all our case studies, as well
as the actual DFD instances used for our evaluation.

The scenario that introduces a confidence issue in the
Location of actors focuses on the resolution of the country
geolocation from the IP addresses of the actors in the system.
Actual accurate information about the geolocation of a related
IP address is only known by the internet service provider.
This data is not available for commercial applications, like the
banking system of the ABAC case study. The banking system
has to rely on public or commercial geolocation databases and
geolocation services [18, 19]. These databases use specially
aggregated blocks of IP addresses to match the IP addresses
to geolocations [26]. For our scenario, we narrow down the
locations to the specific regions USA and Hong Kong. As a
cost-saving measure, the banking system switches the geolo-
cation database, which provides the location information, from
the commercial NetAcuity [19] database to the free MaxMind-
GeoLite [18] database. For the USA, this change only reduces
the country geolocation accuracy by a negligible amount.
However, for countries like Hong Kong, this change reduces
the country geolocation accuracy by more than 40% [10]. The
low accuracy could result in incorrect system behavior once
deployed and opens up the possibility for attacks utilizing the
inaccurate country geolocation resolution. In our example, the
location attribute is not always properly set to Hong Kong. As
a result, the access control system, which is in place, might
block most data flows to the actors, effectively locking the
clerk out of accessing the Hong Kong customer storage.

The DFD approach of Seifermann et al. [25] has no way of
representing this change. With our notion of confidence, this
change in databases can be represented in the model.

B. Evaluation Questions and Design

For our evaluation, we use the Goal Question Metric (GQM)
approach [2] and define the following goals: G1 Examine the



applicability of the approach in different stages of system
development. G2 Examine the accuracy of the approach in
identifying access control violations.

Goal G1 evaluates the applicability. We ask: Q1.1 Is
the required information to apply the proposed notion of
confidence to the described metamodel and analysis process
available during design time? Q1.2 Does adding the notion of
confidence to the described metamodel and analysis process
produce additional value if a system is already deployed and
running? Q1.3 Is the expressiveness of the original DFD
approach [25] affected by the addition of the proposed notion
of confidence?

To answer question Q1.1 we extract what-if scenarios from
the case studies used to evaluate the approach of Seifermann
et al. [25]. We analyze whether it is possible to identify
real-world environmental factors that can be applied to the
extracted scenarios, by exclusively using the extracted design
time DFD and existing research. For question Q1.2, we also
take situation-dependent runtime information into account.

To answer question Q1.3 we compare the expressiveness of
the original DFD approach of Seifermann et al. [25], to our
extended version. To evaluate the expressiveness, Seifermann
et al. [25] use their extended DFD syntax to create instances of
the six case studies that cover typical access control functional-
ity (see Subsection VI-A). We use our extended DFD approach
to model semantically matching case studies and scenarios,
and compare how far we can cover the same set of cases.
We create case studies and scenarios that semantically match
the original case studies and scenarios, by adding default
confidence labels to every attribute label. Default confidence
labels represent complete confidence in the validity of the
corresponding attribute, effectively emulating a DFD without
confidence labels.

Goal G2 evaluates the accuracy. We ask Q2.1 What is
the accuracy of the analysis in identifying issues that result
from mismatched attributes? Q2.2 What is the accuracy of the
analysis in identifying issues that result from low confidence?
Q2.3 What is the accuracy of the analysis in identifying issues
that result from a combination of mismatched attributes and
low confidence? To answer the questions regarding goal G2,
we base our evaluation on the way the data flow diagram
approach of Seifermann et al. [25] was evaluated. They define
a pair of scenarios for every DFD instance of the six case
studies described in Subsection VI-A. A pair consists of the
scenario without an issue and the scenario where an issue
has been introduced. Seifermann et al. [25] derive the issues
either from related work or by themselves. Each issue leads
to violations concerning the analysis. By adding our notion
of confidence, we identify three different kinds of issues
concerning the analysis. An issue can be due to mismatched
attribute labels, due to mismatched confidence labels, or a
combination of both. Based on this distinction, we define four
different types of scenarios, which need to be considered to
evaluate the accuracy of our contribution: S0) No issue; S1) An
issue that is due to mismatched attribute labels. Introduced by
adding an illegal data flow to the DFD; S2) An issue that is due

to mismatched confidence labels. Introduced by identifying a
scenario based on the DFD that reduces the confidence label
of an attribute; S3) An issue is introduced, that is due to
mismatched attribute and confidence labels, by combining S1
and S2. We create pairs of scenarios, which consist of an S0
scenario and either an S1, S2 or S3 scenario, depending on
the evaluation question. For question Q2.1, we reuse the six
scenarios that were used for the DFD approach of Seifermann
et al. [25]. We add default confidence labels to the scenarios
of Seifermann et al. [25]. This way, confidence should not
introduce an issue to the S0 scenarios and should not affect
the mismatched attributes of the S1 scenarios. We also use
our running example without invalid data flows as S0 scenario
and add a data flow to the worker to form a S1 scenario. For
question Q2.2, we use the ABAC case study as S0 and the two
extended ABAC scenarios described in Subsection VI-A as S2
scenarios. We also use our running example S0 scenario and
add a data flow to the visitor as a third S0 and S2 scenario pair.
For question Q2.3, we combine the S1 ABAC scenario from
Q2.1 with the S2 ABAC scenario with a role violation of Q2.2
to form a S3 scenario. We also extend the S1 scenario of our
running example, by lowering the confidence in the worker’s
location attribute to create a second S0 and S3 scenario pair.

The metrics used to evaluate the questions concerned with
goal G2 are precision and recall [21]. Precision (p) calculates
the ratio of correctly identified issues to the sum of overall
identified issues: p =

tp
tp+fp

. Recall (r) calculates the ratio of
correctly identified issues to the number of actually introduced
issues: r =

tp
tp+fn

.

C. Evaluation Results and Discussion

To answer Q1.1, we reckon that information about sensors
and environmental factors can initially be assumed and refined
during the iterative development process. As we have shown
with our running example (see Section III) and the extended
ABAC scenarios (see Subsection VI-A), it is possible to make
some general assumptions about environmental factors from
existing literature [10, 26]. More precise measurements, e.g.,
regarding the signal attenuation inside the actual buildings,
could be conducted, or technical specifications of used sensors
become available during the subsequent development process.
Through the iterative refinement of the model, the results of
an analysis using the model can increasingly reflect the real-
world situation the system is to be deployed in. If a design
time model is already used to validate system requirements
regarding access control, our confidence can be added once
system requirements change in a way that makes it necessary
to handle the known uncertainty of the environment.

For Q1.2, the real-world situation is already known as we
consider deployed systems. We reckon that during runtime,
information about environmental factors is already present.
The additional information enables the software architect to
create a very detailed model representation of the system,
including our notion of confidence. These detailed models can
be used to investigate changes to the system and their potential



impact on the access control of the deployed systems before
implementing them.

Our extended location ABAC scenario described in Sub-
section VI-A presents a situation where using our notion of
confidence is especially worthwhile for deployed systems. In
the described situation, changes in the environmental factors
do not introduce new potential issues with confidentiality but
rather introduce functional issues.

Changes to the database used for country geolocation affect
the accuracy in resolving the geolocation from IP addresses
of the actors in Hong Kong. As a result, data flows might be
blocked, effectively locking them out of accessing the Hong
Kong customer storage. With our notion of confidence, this
information is added to the design time model representation
of the system. The changes to the database result in lower
confidence in the location attribute and therefore enable an
analysis approach to identify the issue beforehand, preserving
the functionality of deployed systems.

To answer question Q1.3 we compare the expressiveness of
the DFD approach of Seifermann et al. [25], to our extended
version. To evaluate the expressiveness, Seifermann et al. [25]
use their extended DFD syntax to create instances of six
case studies, that cover a broad spectrum of access control
models. Further, Seifermann et al. [25] define Prolog queries
for each case study. As we have only slightly modified the
design time model and analysis to consider confidence, we
can simply modify the DFD instances of Seifermann et al. [25]
to use our extended DFD syntax, while still representing the
semantically identical case study. Similarly, we can replicate
the corresponding queries almost exactly. This suggests, that
adding our notion of confidence did not negatively impact the
expressiveness. The added confidence, on the other hand, en-
ables attributes to incorporate information about environmental
factors. By including confidence, environmental factors have
a direct effect on the expressive power of the corresponding
attribute. This leads to an overall increase in expressiveness.

To answer the questions regarding goal G2, we executed the
model instances for the S0 and S1 scenario pairs (Q2.1), S0 and
S2 scenario pairs (Q2.2) and S0 and S3 scenario pairs (Q2.3)
of the described case studies. For each question, we correctly
did not identify non-existing issues in the S0 scenarios. For
the seven S1 scenarios defined for Q2.1, the three S2 scenarios
defined for Q2.2 and the one S3 scenario defined for Q2.3 we
were able to exclusively identify all contained issues correctly.

For Q2.1, this results in a precision of p = 7
7+0 = 1.0 and

a recall of r = 7
7+0 = 1.0. When comparing results, we can

see that the addition of confidence did not impact the ability
of the DFD approach of Seifermann et al. [25] to correctly
identify access control issues, that result from mismatched
attributes. This shows, that while we extend the ability of the
DFD approach to represent and identify issues that result from
confidence, we did not impair the original accuracy.

For Q2.2, this results in a precision of p = 3
3+0 = 1.0 and

a recall of r = 3
3+0 = 1.0. We did expect similar results,

as in our extension of the DFD approach, attribute issues and
confidence issues both result from mismatched labels. The way

confidence labels are compared is equal to how the attribute
labels are compared. Bad accuracy for S1 scenarios should
result in bad accuracy in S2 scenarios and vice versa.

For Q2.3, this results in a precision of p = 2
2+0 = 1.0 and

a recall of r = 2
2+0 = 1.0. We did expect similar results, as

the analysis is already able to identify issues from mismatched
attributes and confidence independently. As we use the same
query for the ABAC S3 scenario that was used for Q2.1 and
Q2.2, solutions that were found for Q2.1 and Q2.2 can still
be found, effectively creating the union of both results.

D. Threats to Validity

As our approach is evaluated with case studies, we discuss
the internal validity, external validity, construct validity, and
reliability of our contribution, as characterized by Runeson et
al. [24]. As our implementation of an analysis is realized with
an extension of the DFD approach of Seifermann et al. [25],
the same threats of validity apply. Due to lack of space, we
can not elaborate on these threats. Additionally, we identify
the following threats to validity regarding our approach:

The main threat to the internal validity of our evaluation of
applicability is whether our chosen questions and discussed
results hold enough weight to make a proper statement about
applicability. The discussed additional value of our contri-
bution for runtime systems in question Q1.2 highly depends
on the system and its area of application. However, we were
able to create multiple problematic real-world situations, using
values of environmental factors taken from existing literature.

The main threat to external validity of our accuracy eval-
uation stems from the small number of S2 and S3 scenarios
we cover when answering questions Q2.2 and Q2.3. We try to
partly mitigate this threat by defining our S2 and S3 scenar-
ios using real-world environmental factors and measurements
from existing literature, removing our bias towards using
solely made-up values that positively influence the accuracy.

To mitigate threats to construct validity and properly struc-
ture our evaluation we applied the GQM approach. Using
metrics to summarize the applicability of an approach is not
sufficiently possible, as the applicability is generally very
dependent on variations and limitations of the actual system an
approach is applied at. Finally, the precision and recall metrics
are common for evaluating accuracy and are used to evaluate
related work [4, 25, 29].

To mitigate threats regarding the reliability of our evalua-
tion, we publish a data set and replication package [5]. The
replication package contains the implementation and model
extension, as well as all model instances of every analyzed
case study. The data set contains further illustrations and
descriptions of the case studies used for the evaluation. This
allows others to better reproduce our results.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a design time approach of handling
uncertainties of a systems environment within the context of
access control. Based on related work, we identified three
types of factors in the environment of a software system,



that influence the validity of the resulting access control
attributes. By combining these factors, we introduced a notion
of confidence in the validity of attributes. Using fuzzy infer-
ence systems, we represent and combine these environmental
factors to a resulting confidence. Based on the DFD approach
of Seifermann et al. [25], we implemented an access control
analysis process for design time models, which integrates
confidence in the model creation and constraint definition.

When considering the uncertainty taxonomies of Perez-
Palacin and Mirandola [20] or Troya et al. [27], we are only
able to handle a small part of the overall uncertainty. In future
work, we aim to look into applying our notion of confidence
to a broader spectrum of uncertainty.
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