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Abstract. There have been a number of approaches to employing neural
networks (NNs) in self-adaptive systems; in many cases, generic NNs/deep
learning are utilized for this purpose. When this approach is to be applied
to improve an adaptation process initially driven by logical adaptation
rules, the problem is that (1) these rules represent a significant and tested
body of domain knowledge, which may be lost if they are replaced by an
NN, and (2) the learning process is inherently demanding given the black-
box nature and the number of weights in generic NNs to be trained. In
this paper, we introduce the rule-specific Neural Network (rsNN) method
that makes it possible to transform the guard of an adaptation rule into
an rsNN, the composition of which is driven by the structure of the logical
predicates in the guard. Our experiments confirmed that the black box
effect is eliminated, the number of weights is significantly reduced, and
much faster learning is achieved while the accuracy is preserved.

Keywords: Self-adaptive systems · adaptation rules · machine learning · neural
networks

1 Introduction

The recent advances in neural networks and machine learning [8] led to their
proliferation in various disciplines, and the field of self-adaptive systems is no
exception [13]. In particular, they have found usage in approaches to control how
systems of cooperating agents are formed and reconfigured at runtime [12, 4].

These approaches employ neural networks to implement the self-adaptation
loop, also known as the MAPE-K loop, which controls the runtime decisions in
the system (e.g., to which service to route a particular request) and the runtime
architectural changes (e.g., which services to deploy/un-deploy or reconfigure).

In typical cases, a neural network is used for the analysis and planning
stages of the MAPE-K loop, replacing the traditional means of analyzing the
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system state and deciding on adaptation actions. These traditional adaptation
mechanisms are often specified in some form of logical rules (e.g., if-then rules or
a state machine with guards and actions) [12, 6, 16].

Using a neural network for making decisions on adaptation actions naturally
means training the network for the situations the self-adaptive system is supposed
to handle. Such training typically requires a large number of system behavior
examples—training data in the form of observed inputs and expected adaptation
actions. This approach is significantly different from the logical rules that have
been traditionally used to describe adaptation actions. Due to this substantial
conceptual gap between the two approaches, it is difficult to evolve an existing
self-adaptive system based on some form of logical rules into a new system that
uses a neural network to make adaptation decisions. Seemingly, the typical design
choice is to recreate the analysis and planning stages of the MAPE-K loop from
scratch.

The existing logical rules represent a significant body of domain knowledge,
especially if the system has been well-functioning and tuned to its task. Thus,
when replacing the logical rules with a neural network, this body of domain
knowledge is often lost, which leads to severe regress. On the other hand, applying
neural networks may be advantageous as they can dynamically learn completely
unanticipated relationships of stochastic character. Thus, it makes the self-
adaption refined to take advantage of the specific features otherwise hidden in
the system and not captured in the inherently static logical rules.

Nevertheless, if logical rules are used for determining the expected actions in
training data, it is not easy to train the neural network to reliably yield actions
corresponding to the existing rule-based self-adaptive system in question. The
main culprit is that the neural network is often built as a black box composed
of generic layers (such as a combination of recurrent and dense layers). Thus,
the structure of such a generic neural network does not reflect the relationships
characteristic of the domain in which the self-adaptive system resides. In other
words, the neural network is built as a generic one, not exploiting the existing
domain knowledge about the self-adaptive system whose adaptation actions it
controls.

While this genericity is inherently advantageous in empowering the neural
network to “discover” ultimately unanticipated relationships, it may also hinder
the ability to adequately learn because it makes the neural network relatively
complex, thus potentially increasing adaptation uncertainty.

Therefore, replacing a rule-based adaptation entirely with a generic neural
network-based one might be an overly drastic change that may potentially degrade
the reliability of the system (at least in the short-term perspective). Moreover,
it may raise legitimate concerns since generic neural networks are much less
comprehensible and predictable given their black-box nature and the typically
large number of weights to be trained—there is always a danger of overfitting.

In this paper, we aim to answer the following research questions: (1) how to
endow an existing rule-based self-adaptation system with the ability to learn via
neural networks while still benefiting from the domain knowledge encoded in the



logical rules; and (2) how to scale the learning ability in a way that would allow
the transition from logical rules to a neural network to be done on a step-by-step
basis.

We address these research questions by introducing a rule-specific Neural
Network (rsNN) method, which allows the transformation of an adaption rule to
the corresponding rsNN to be done systematically. The key feature is that an
rsNN is composable - its architecture is driven by the structure of the logical
predicates in the adaption rule in question. Moreover, prior to the composition
process, the predicates can be refined by predefined atomic "attunable" predicates,
each having a direct equivalent in a primitive element of rsNN ("seed" of rsNN).

The rest of the paper is organized as follows. Section 2 presents an example
that is used for motivating and illustrating rsNN. Section 3 is devoted to the
key contribution of the paper—it describes the concepts and ideas of rsNN,
while Section 4 discusses the methodology, results, and limitations of experi-
mental evaluation. Section 5 discusses other approaches focused on employing
neural networks in self-adaptation, and the concluding Section 6 summarizes the
contribution.

2 Motivating example

As a motivating example, we utilize a realistic yet straightforward use-case from
our former project focused on security in Industry 4.0 settings3. The example
employs the MAPE-K loop principle to dynamically reconfigure the software
architecture of agents—workers (represented by components) operating jointly
on a common task. In the architecture, groups of workers are determined by the
access policies that allow the member workers to perform their tasks. Since these
tasks are subject to changes, the access control is intertwined with dynamic,
runtime modification of the software architecture.

Implementation-wise, the MAPE-K controller dynamically re-establishes the
groups of workers to deal with situations in the environment—e.g., when a
machine breaks down, the MAPE-K controller establishes a group of workers that
communicate and collaborate to fix the machine (so that the software architecture
is dynamically reconfigured). It also gives these workers the necessary access
rights, e.g., to access the machine’s logs and physically enter the room (workplace)
where the machine is located.

In the example, we pick up a particular adaptation rule from the larger
use-case in the project mentioned above, and later in Section 3, we will employ
it to demonstrate a step-by-step transition from this static adaptation rule to
the corresponding rsNN neural network.

Let us consider a factory with several workplaces where production is organized
in shifts, each determined by its start and end time, during which worker groups,
each with an assigned (the only) workplace, perform their tasks. The workers
are allowed to enter the factory only at a time close to a particular shift’s start
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and must leave soon after the shift ends. After entering, they have to pick up
headgear (protective equipment) from a dispenser as a necessary condition for
being permitted to enter the assigned workplace. Similarly, they are allowed to
enter only the assigned workplace and only close to the shift start time (and have
to leave as soon as the shift ends).

As expected in the Industry 4.0 domain, the assignment of workers to par-
ticular shifts is not static but can frequently change, and the roles of individual
workers within the shift can also alternate rapidly. This leads to changes in
the runtime software architecture. Consequently, the access control system of
the factory cannot assign access rights statically only, thus supporting dynamic,
situation-based access control.

To perform access right adaptation, the MAPE-k controller uses adaptation
rules in the form of guard-actions, where the action is adding/revoking or allowing
access.

Listing 1 shows an example of an adaptation rule which dynamically deter-
mines a group of workers formed for the duration of a shift, having access rights
to the assigned workplace. In particular, the adaptation rule specifies whether a
specific worker belongs to the group and if so, it gives the worker access to the
workplace assigned for the shift.

The structure of the adaptation rule has three parts. First, there are declared
data fields (in this particular case, only a single field initialized to the shift of the
given worker—line 2). Second, there is a guard, which defines the condition when
the rule is applied. This particular guard reads: To allow a worker to enter the
assigned workplace, the worker needs to be already at the appropriate workplace
gate (line 5), needs to have a headgear ready (line 6), and needs to be there at the
right time (i.e., during the shift or close to its start or end—line 4). Finally, there
is an action determining what has to be executed—in this case, the assignment
of the allow access rights to the assigned workplace to the worker (line 8).

1 rule AccessToWorkplace(worker) {
2 shift = shifts.filter(worker in shift.workers)
3 guard {
4 duringShift(shift) &&
5 atWorkplaceGate(worker, shift.workplace) &&
6 hasHeadgear(worker)
7 }
8 action { allow(worker, ENTER, shift.workplace) }
9 }

Listing 1: Access to workplace rule

The predicates atWorkplaceGate, hasHeadgear, and duringShift are declared in
Listing 2.

The predicate duringShift tests whether the current time is between 20 minutes
(i.e., 1200 seconds) before the start of the shift and 20 minutes after the end of
the shift. The global variable NOW contains the current time.

The atWorkplaceGate predicate mandates that the position of the worker has
to be close (in terms of Euclidean distance) to the gate of the workplace assigned
to the worker.



The predicate hasHeadgear checks whether the worker retrieved a headgear
from the dispenser. To check this, we assume that each worker is associated with
a list of related events (the events data field of the worker—line 11 in Listing 2).
For instance, retrieving and returning the headgear are the events registered
in the list of events upon performing the respective actions. Thus, the check of
whether a worker has a headgear available is performed by verifying that after
filtering the two specific event types from the list (line 12), the latest event is
TAKE_HGEAR (the filtered events are sorted in descending order—line 13 and
line 14).

1 pred duringShift(shift) {
2 shift.startTime − 1200 < NOW && shift.endTime + 1200 > NOW
3 }
4
5 pred atWorkplaceGate(worker, workplace) {
6 sqrt((workplace.gate.posX − worker.posX) ^ 2 +
7 (workplace.gate.posY − worker.posY) ^ 2) < 10
8 }
9

10 pred hasHeadgear(worker) {
11 worker.events
12 .filter(event −> event.type == (TAKE_HGEAR || RET_HGER))
13 .sortDesc(event −> event.time)
14 .first().type == TAKE_HGEAR
15 }

Listing 2: Predicates from Listing 1

3 Refining adaptation rules

The problem with the adaptation rules we presented in Section 1 is that their
guards are too static, and thus they do not capture the domain-specific stochastic
character of the data they act upon. As already mentioned in Section 1, we
aim to employ a dedicated rule-specific neural network (rsNN) to benefit from
its ability to learn from the domain characteristic data being handled. To this
end, in this section, we outline the method that allows us to refine an original
adaption rule to make its guard predicates "attunable" and convert the guard
into an rsNN . In a sense, our method of employing a dedicated rsNN for this
purpose can be viewed as paving a middle ground between the adaptation rules
with static guards and the adaptation rules driven by (typically complex) generic
neural networks such as in [12, 17].

The main idea of our method unfolds in three stages:

1. An adaptation rule is refined by manually rewriting (transforming) its se-
lected guard predicates into their attunable form—they become attunable
predicates. This is done by applying predefined atomic attunable predi-
cates (aa-predicates) listed in Section 3.1. These aa-predicates serve as rsNN
seeds in the second stage. Nevertheless, not all the guard predicates have to



be transformed this way—those remain static predicates (their selection is
application-specific).

2. We apply an automated step that generates an rsNN that reflects the guard of
the refined adaptation rule, containing, in particular, the trainable parameters
of aa-predicates as trainable weights.

3. We employ traditional neural network training using stochastic gradient
descent to pre-train the trainable weights.

The result is an rsNN being a custom neural network, the composition of
which is driven by the structure of the guard formula with aa-predicates. This
neural network is pre-trained to match outputs of the original guard formula
of the adaptation rule. Nevertheless, being a neural network, it can be further
trained by running additional examples.

As to pre-training data, we assume there are sample traces of input data to
the system, obtained either from historical data, simulation, or random sampling.
We use the logical formulas of the original guard predicates over the input data
to provide the ground truth (i.e., expected inputs) employed in the supervised
learning of the rsNN .

Further, the developer has the ability to specify the learning capacity in
many aa-predicates, which in turn determines how many neurons are used for its
implementation in the rsNN .

3.1 Atomic attunable predicates as rsNN seeds

This section provides an overview of the aa-predicates defined in the rsNN
methods. The key idea is that these predicates serve as elementary building
blocks for attunable predicates forming an adaptation rule, and at the same time,
each of them is easily transformable into a building block of rsNN—it serves as
an rsNN seed as defined in Section 3.3.

Each aa-predicate operates on a single n-dimensional input value (i.e., a fixed-
sized vector). Since each aa-predicate yields a true/false value, its corresponding
rsNN seed solves a classification task, yielding likewise true/false.

Following the type of input value domain, we distinguish between aa-predicates
that operate on domains with a metric (i.e., with the ability to measure the
distance between quantities) and categorical quantities where no such metric
exists:

1. Metric Quantity: There are two types of aa-predicates defined over a metric:

(a) Quantity lies in a one-sided interval

isAboveThreshold_nD(x,min,max)

isBelowThreshold_nD(x,min,max)

Here x is a value in an n-dimensional space that is compared to a learned
threshold (above or below) by the corresponding rsNN seed. In order to



control the uncertainty that is potentially induced by learning, the min and
max parameters impose the limits for the learned threshold.

(b) Quantity lies in a two-sided interval

hasRightValue_nD(x,min,max , c)

Here it is verified whether the parameter x lies inside the learned interval
of an n-dimensional space. The parameters min and max have the same
meaning as in the case of the aa-predicates for a one-sided interval, while
the parameter c states the learning capacity of the corresponding rsNN seed;
technically, this is, e.g., the highest number of the neurons in a hidden layer
of the rsNN seed.

2. Categorical quantity: For this type of input domain, we define an aa-
predicate that decides whether a categorical quantity has the right value:

hasRightCategories_nD(x,m, c)

Here x is an n-dimensional vector of categorical values from the same domain
of the size m (the number of categories). The corresponding rsNN learns
which combinations of categorical values in the input vector satisfy this
aa-predicate. The learning capacity is determined by c.

3.2 Making guard predicates attunable

In this section, we demonstrate the first stage of the rsNN method (i.e., the
manual rewriting of guard predicates) on the example presented in Section 2.
We show two alternatives to such rewriting to demonstrate that a designer may
choose several ways to make a predicate attunable depending on what quantities
are to be the subject of future learning.

We start with the guard predicates shown in Listing 2. At first, we assume
that the designer would like to rewrite duringShift to make it attunable, with
the goal to learn the permitted time interval in which the access is allowed. For
example, security reasons may require learning the typical behavior patterns
of workers induced by the public transportation schedule. (On the contrary, in
Listing 2, the interval is firmly set from 20 minutes before the shift starts to 20
minutes after the shift is over.)

We rewrite the duringShift guard predicate as shown in Listing 3: The com-
parison of NOW with a particular threshold is replaced by the aa-predicates
isAboveThreshold and isBelowThreshold, respectively. Each of them represents a
comparison against a learned threshold.

The aa-predicates isAboveThreshold and isBelowThreshold have three parameters:
(1) the value to test against the learned threshold, (2) the minimum value of the
threshold, (3) the maximum value of the threshold.

Since this threshold should not depend on the actual time of the shift, the
times are given relative to its start and end. By assuming a worker cannot arrive



earlier than one hour before the shift starts (+3600 seconds in line 2), the relative
time 0 corresponds to that point in time (as computed by NOW + 3600 − shift.end).
Similarly, by assuming a worker cannot leave later than one hour after the shift
ends (−3600 seconds in line 4), the relative time 0 corresponds to that point in
time (as computed by NOW − 3600 − shift.end ). The minimum and maximum
values of the threshold correspond to the interval of 10 hours (i.e., 36000 seconds).

1 pred duringShift(shift) {
2 isAboveThreshold_1D(NOW + 3600 − shift.start,min=0, max=36000)
3 &&
4 isBelowThreshold_1D(NOW − 3600− shift.end, min=−36000, max=0)
5 }
6
7 pred atWorkplaceGate(worker, workplace) {
8 sqrt((workplace.gate.posX − worker.posX) ^ 2 + (workplace.gate.posY −

worker.posY) ^ 2) < 10
9 }

10
11 pred hasHeadgear(worker) {
12 worker.events.filter(event −> event.type == TAKE_HGEAR || RET_HGER))
13 .sortDesc(event −> event.time).first().type == TAKE_HGEAR
14 }

Listing 3: Guard predicates with refined duringShift by aa-predicates—one-sided
intervals

The other predicates atWorkplaceGate and hasHeadgear) stay the same, as does
their conjunction in the AccessToWorkplace rule.

Note that we combined static predicates with an attunable predicate. This
shows that only a part of a rule can be endowed with the ability to learn while
the rest can stay unchanged. At the same time, we put strict limits on how far
the learning can go. In the example, these limits are expressed by the interval of
10 hours which spans from one hour before the shift to one hour after the shift
(assuming the shift takes 8 hours). In other words, the value in the attunable
predicate gained in the process of learning cannot exceed these bounds. This
is useful if learning is to be combined with strict assurances with respect to
uncertainty control.

As another alternative of the rule refinement, we assume the time of entry,
place of entry, and the relation to the last event concerning the headgear is to be
learned. Also, contrary to the variant of duringShift in Listing 3, we assume the
time of entry is not just a single interval but can be multiple intervals (e.g., to
reflect the fact that workers usually access the gate only at some time before and
after the shift due to the public transportation opportunities).

To capture this, we rewrite the predicates duringShift , atWorkplaceGate, and
hasHeadGear as shown in Listing 4.

The guard predicate duringShift is realized using the aa-predicate hasRight-
Value1D, which represents a learnable set of intervals. It has four parameters. In
addition to the first three, which have the same meaning as before (i.e., value to
be tested on whether it belongs to any of the learned intervals, the minimum,
and the maximum value for the intervals), there is the fourth parameter capacity



which expresses learning capacity. The higher it is, the finer intervals the pred-
icate is able to learn. Since it works relative to the min/max parameters, it is
unitless. Technically, the learning capacity determines the number of neurons
used for training. The exact meaning of the capacity parameter is given further
in Section 3.3.

The guard predicate atWorkplaceGate is rewritten similarly. However, as the
position is a two-dimensional vector, a 2D version of the hasRightValue aa-predicate
is used. The meaning of its argument is the same as in the 1D version applied
for the duringShift . A special feature of atWorkplaceGate is that it is specific to the
workplace assigned to the worker. (There are several workplaces where the work
is conducted during a shift. Each worker is assigned to a particular workplace,
and their access permission is thus limited only to that workplace.) Thus, the
hasRightValue2D aa-predicate has to be trained separately for each workplace.
The square brackets express this after the hasRightValue2D aa-predicate, which
signifies that its training is qualified by workplace ID. Since the running example
assumes that there are three workplaces in a shift, there are three aa-predicates
to be trained.

The hasHeadGear guard predicate is rewritten using the hasRightCategories_1D
aa-predicate which assumes 1-dimensional vector of categorical values (i.e., a
single value in this case) from the domain of size 2. In this simple case, the
learning capacity is set to 1.

1 pred duringShift(shift) {
2 hasRightValue_1D(NOW − shift.start, min=0, max=36000, capacity=20)
3 }
4
5 pred atWorkplaceGate(worker) {
6 hasRightValue_2D[worker.workplace.id](worker.pos,
7 min=(0,0), max=(316.43506,177.88289), capacity=20)
8 }
9

10 pred hasHeadGear(worker) {
11 hasRightCategories_1D(
12 worker.events.filter(event −> event.type == (TAKE_HGEAR ||

RET_HGER))
13 .sortDesc(event −> event.time).take(1), categories=2, capacity=1
14 )
15 }

Listing 4: Guard predicates expressed by a two-sided interval and categorical
quantity aa-predicates

3.3 Construction of rsNN

In this section, we formalize the second stage of the rsNN method, i.e., the
automated construction of an rsNN that reflects the guard of a refined adaptation
rule. First, we show how to transform a logical formula into an elementary rsNN
(rsNN seed) in general, and how to combine rsNN seeds into larger units (and
how to combine these larger units as well) via transformed logical connectives.



Then, we describe how the elementary logical formulas in the guard (i.e., static
predicates and aa-predicates) are transformed into rsNN seeds.

Transforming a logical formula and connectives.
A logical formula L(x1, . . . , xm) is transformed to a continuous function
N(x1, . . . , xm, w1, . . . , wn) → [0, 1] (i.e., a neural network), where x1, . . . , xm

are the inputs to the logical formula (e.g., the current time, position of the
worker in an aa-predicate), and w1, . . . , wn are trainable weights. The goal
is to construct the function N and to train its weights in such a way that
L(x1, . . . , xm) ⇔ N(x1, . . . , xm, w1, . . . , wn) > 0.5 for as many inputs x1, . . . , xm

as possible. By convention, we interpret N(. . . ) > 0.5 as true, while if this
relation does not hold it is interpreted as false. Also, we use the symbol T to
denote the transformation from the logical formula L to the continuous function
N—i.e., N(. . . ) = T (L(. . . )).

As to logical connectives, we deviate from the traditional notion in which
conjunction is defined as a product and disjunction is derived using De Morgan’s
laws. This is because our experiments showed that the conjunctions of multiple
operands are close to impossible to train (very likely due to the vanishing
gradient problem [9]). Therefore we transform conjunction and disjunction as
follows (similarly to in [11]):

T (L1& . . .&Lk) = S ((T (L1) + · · ·+ T (Lk)− k + 0.5) ∗ p)

T (L1 ∨ · · · ∨ Lk) = S ((T (L1) + · · ·+ T (Lk)− 0.5) ∗ p)

T (¬L) = 1− T (L)

where S(x) is the sigmoid activation function defined as S(x) = 1
1+e−x , and p > 1

is an adjustable strength of the conjunction/disjunction operator. The bigger it
is, the stricter the results are. However, too high values have the potential to
harm training due to the vanishing gradient problem.

Transformation of a static predicate. A static predicate is transformed simply
into a function that returns 0 or 1 depending on the result of the static predi-
cate. Formally, we transform a static predicate LS(x1, . . . , xm) to the function
NS(x1, . . . , xm) as follows:

T (LS) =

{
0 if not LS(x1, . . . , xm)

1 if LS(x1, . . . , xm)

Transformation of one-sided interval aa-predicates. We transform an
aa-predicate isAboveThreshold(x,min,max) to the function N>(x,wt) and an
aa-predicate isBelowThreshold(x,min,max) to the function N<(x,wt) as follows.

T (isAboveThreshold) = S

((
x−min

max−min
− wt

)
∗ p
)

T (isBelowThreshold) = S

((
wt −

x−min

max−min

)
∗ p
)



where wt is a trainable weight.

Transformation of two-sided interval aa-predicates. We base these aa-
predicates on radial basis function (RBF) networks [14]. We apply one hidden layer
of Gaussian functions and then construct a linear combination of their outputs.
The weights in the linear combination are trainable. The training capacity c in
the aa-predicate determines the number of neurons (i.e., points for which the
Gaussian function is to be evaluated) in the hidden layer.

We set the means µi of the Gaussian function to a set of points over the
area delimited by min and max parameters of the aa-predicate (e.g., forming a
grid or being randomly sampled from a uniform distribution). We choose the
σ parameter of the Gaussian function to be of the scale of the mean distance
between neighbor points. The exact choice of σ seems not to be very important.
Our experiments have shown that it has no significant effect and what matters
is only its scale, not the exact value. The trainable linear combination after the
RBF layer automatically adjusts to the chosen values of µi and σ.

For the sake of clarity, we show the transformation of

hasRightValue_nD(x,min,max , c)

for n = 1 and for arbitrary n. In the 1-D case, we transform an aa-predicate
hasRightValue_1D(x,min,max , c) to the function N1

≃(x,wa1
, . . . , wac

, wb) as
follows:

T (hasRightValue_1D) = S

(
wb +

c∑
i=1

wai
e−

(µi−x)2

2σ2

)

where c is the capacity parameter of the predicate, µi ∈ [min,max ] and σ are
set as explained above, and wa1 , . . . , wac , wb are trainable weights.

This is generalized to the n-D case as follows:

T (hasRightValue_nD) = S

(
wb +

c∑
i1=1

· · ·
c∑

in=1

wai1,...,in
e−

|µi1,...,in
−x|2

2σ2

)

where µi,j ∈ [min1 ,max1 ]× · · · × [minn ,maxn ] and σ are set as explained above,
x is an n-D vector, | · | stands for vector norm, and wa1,...,1 , . . . , wac,...,c , wb are
trainable weights.

Transformation of a categorical quantity aa-predicate. We base this
aa-predicate on a multi-layer perceptron with one hidden layer, which has the
number of units equal to the capacity parameter c of the aa-predicate and is
activated by the ReLU activation function.

The transformation of an aa-predicate

hasRightCategories_nD(x,m, c)



to the function N .
=(x,w

h
a1,1

, . . . , wh
ac,m

, wh
b1
, . . . , wh

bc
, wo

a1
, . . . , wo

ac
, wo

b ) is defined
as follows:

T (hasRightCategories_nD) =

S

wo
b +

c∑
i=1

wo
ai

ReLU

wh
bi +

n∑
j=1

m∑
k=1

wh
ai,j,k

δxj ,k


where x ∈ {1, . . . ,m}n is the n-dimensional input vector of categorical values
from the same domain of size m, c is the capacity, wh

i,j,k, w
h
b are trainable weights

of the hidden layer, wo
ai
, wo

b are trainable weights of the output layer, δi,j is the
Kronecker delta—i.e., δi,j = 1 if i = j and δi,j = 0 otherwise. The ReLU function
is defined as ReLU(x) = max(0, x). Note that the Kronecker delta in the formula
stands for one-hot encoding of the categorical input values.

3.4 Training an rsNN

The N function we defined as the result of the transformations in Section 3.3
contains trainable weights. We train these weights using supervised learning and
employing the traditional stochastic gradient descent optimization.

The samples for training are taken from existing logs obtained from the system
runtime or a simulation. In the case of the motivation example, each sample
contains the current time, the worker id, its position, and the history of events
associated with the worker. To obtain accurate outputs for supervised learning,
we exploit the fact that we have the original logical formula of the guard with
static predicates available. Thus we use it as an oracle for generating the ground
truth for training inputs. The exact training procedure is described in [1].

After this training step, the function N can be used as a drop-in replacement
for the corresponding adaptation rule. Moreover, being a neural network, it is able
to digest additional samples generated at runtime—e.g., to learn from situations
when the outputs of the system have been manually corrected/overridden.

4 Evaluation

We evaluated our approach by comparing the training results of rsNNs created
by the method proposed in Section 3 with generic NNs comprising one and two
dense layers. The complete set of necessary code and data for replicating the
evaluation, as well as the experiments, detailed evaluation of results, graphs, and
discussion that did not fit this paper, is available in the replication package [1].

For our motivating example, we created two datasets: (a) random sampled
dataset, which was obtained by randomly generating inputs and using the original
logical formula of the guard as an oracle; (b) combined dataset, which combines
data from a simulation and the random dataset. Both datasets have about 500, 000
data points.



The datasets were balanced in such a manner that half of the samples corre-
spond to true and a half to the false evaluation of the guard of AccessToWorkplace.
Additionally, to obtain more representative results for evaluation, the false cases
were balanced so that each combination of the top-level conjunctions outcomes
(i.e., duringShift & atWorkplaceGate & hasHeadGear) has the same probability.

The combined dataset combines false cases from random sampling and true
cases from a simulation. The simulation was performed by a simulator we de-
veloped in the frame of an applied research project (Trust4.04). The reason for
combining these two sources is to get better coverage for all possible cases when
the guard of the adaptation rule evaluates to false.

As the baseline generic NNs, we selected dense neural networks. Given our
experiments and consultation with an expert outside our team (a researcher from
another department who specializes in practical applications of neural networks),
this architecture suits the problem at hand the best. Our setup comprises networks
with one and two dense layers of 128 to 1024 nodes (in the case of two layers, both
of them have the same amount of nodes). The dense layers use ReLU activation,
and the final layer uses sigmoid. The greatest accuracy was observed when two
256-node dense layers were used; thus, this configuration was selected as the
baseline.

Three versions of rsNNs representing our approach were built corresponding to
different levels of refinement. The first two models refined only the time condition:
one used the isAboveThreshold and isBelowThreshold variant (as in Listing 3) —
denoted as “time (A&B)”, the other used hasRightValue aa-predicate (similar to
Listing 3 but with hasRightValue instead of the combination of isAboveThreshold and
isBelowThreshold)—denoted as “time (right)”. The last model refined all involved
inputs (time, place, and headgear events) as outlined in Listing 4 — denoted as
“all ”. To verify the properness of logical connectives redefinition (Section 3.3),
we built a TensorFlow5 model with no trainable weights (i.e., just rewriting the
static predicates using their transformation described in Section 3.3). By setting
p = 10, we achieved 100% accuracy (this value of p was then used in all other
experiments).

baseline time (A&B) time (right) all

Accuracy (random) 99.159% 98.878% 99.999% 99.978%

Accuracy (combined) 99.393% 92.867% 99.993% 99.575%

number of weights 68, 353 2 21 1, 227

Table 1: Comparison of accuracies of individual methods

4https://github.com/smartarch/trust4.0-demo
5https://www.tensorflow.org/ (version 2.4)



Table 1 presents the measured accuracies on the testing set6 of both datasets
(random and combined) after 100 training epochs, comparing rsNNs resulting
from different refinements with the baseline. The last two models outperform the
baseline in terms of accuracy. The number of Weights line refers to the number
of trainable weights in each model. While the baseline has multiple weights (as it
features two dense layers), our rsNNs have significantly fewer weights since their
composition benefits from the domain knowledge ingrained in the adaptation
rules.

The lower number of trainable parameters positively impacts the performance
as it makes the models train and evaluates significantly faster whilst achieving
comparable accuracy levels. We did not perform a thorough performance analysis
since it heavily depends on many configuration parameters (e.g., batch size) and
the actual hardware (especially whether CPU or GPU is used for the training).
However, in our configurations, the proposed model was trained roughly several
times (up to an order of magnitude) faster than the baseline.

5 Related Work

In the domain of adaptive systems, NNs and machine learning are used in several
areas. Closely related approaches use NNs in the adaptation cycle analysis phase.
Namely, in [16], neural networks are applied during the analysis and planning
phase to reduce a large adaptation space. We apply rsNN during the same phases
to refine adaptation rules, thus allowing for more flexible adaptation. Similarly,
in [6], NNs are applied during the restriction of the adaptation space to achieve
a meaningful system after adaptation.

In [12], NNs are used to forecast values of QoS parameters, thus allowing
for the progressive selection of adaptation. A similar approach is used in [2] to
predict values in sensor networks and proactively perform adaptation. Multiple
machine learning algorithms, including NNs, are employed in [5] to predict QoS
values again.

The approaches above target either reducing the adaptation space or adapting
a system proactively. They differ from our approach as we use neural networks
to relax strict conditions in an adaptive system and thus to learn new unfore-
seen conditions. A conceptually similar approach is [7], where machine learning
approaches are utilized for training a model for rule-based adaptation. Instead
of NNs, approaches like the random forest, gradient boosting regression models,
and extreme boosting trees are used. Similarly, paper [3] proposes a proactive
learner; however, the infrastructure is mainly discussed, and details about the
used machine learning techniques are omitted. In [15], the authors propose an
approach to dynamic learning of knowledge in self-adaptive and self-improving
systems using supervised and reinforcement learning techniques. In [10], machine
learning is used to deal with uncertainty in an adaptive system (namely in a

6We divide the data only to the training and testing set (testing set holds 10% of
data). We do not need a validation set since we do not perform any hyper-parameter
training.



cloud controller). Here, the proposed approach allows users to specify poten-
tially imprecise control rules expressed with the help of fuzzy logic, and machine
learning techniques are used to learn precise rules. The approach is the complete
opposite of ours, where we start with precise rules and, via machine learning, we
reach attunable ones. A similar approach is in [18], where reinforcement learning
is also employed for generating and evolving the adaptation rules.

6 Conclusion

In this paper, we introduced the rule-specific Neural Network (rsNN) method
that allows for transforming the guard of an adaptation rule into a custom
neural network, the composition of which is driven by the structure of the logical
predicates in the guard. An essential aspect of rsNN is that by having the ability
to combine the original static predicates with attunable ones (and, in addition,
to set the training capacity of the corresponding part of rsNN network), one can
step-by-step proceed from a static non-trainable adaptation rule to fully trainable
one. This aspect allows for a gradual transition from the original self-adaptive
system to its trainable counterpart while still controlling the inherent uncertainty
of introducing machine learning into the system.

The aspect of being able to control the uncertainty inherent to machine
learning is a distinguishing factor of the rsNN method. This stems primarily
from two facts: (1) The structure of the rsNN generated from an adaption rule
directly relates to the composition of its predicates, and the static predicates can
be combined with attunable ones. (2) An rsNNs is a neural network with almost
two orders of magnitude fewer neurons than a generic neural network (e.g., a
multi-layer perceptron network with several hidden dense layers) solving the same
task. This makes the rsNN less prone to overfitting, which, in general, may lead to
unexpected results in real environments. Moreover, given the significant difference
in the number of neurons and thus trainable weights, rsNN networks train much
faster, as showcased in the results of the experiments. In future work, we aim to
extend the set of the predefined aa-predicates to provide a tool for applications
also featuring other than metric and categorical quantities. Furthermore, we are
looking into ways of supporting the process of gradual transformation of static
predicates into attunable ones with the aim to make this process semi-automatic.
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