
A Classification of Software-Architectural
Uncertainty regarding Confidentiality

Sebastian Hahner, Stephan Seifermann, Robert Heinrich, and
Ralf Reussner

KASTEL – Institute of Information Security and Dependability,
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

{sebastian.hahner,robert.heinrich,ralf.reussner}@kit.edu,
stephan.seifermann@alumni.kit.edu

Abstract. In our connected world, ensuring and demonstrating the con-
fidentiality of exchanged data becomes increasingly critical for software
systems. However, especially in early system design, uncertainty exists
about the software architecture itself and the software’s execution en-
vironment. This does not only impede early confidentiality analysis but
can also cause data breaches due to the lack of awareness of the impact
of uncertainty. Classifying uncertainty helps in understanding its impact
and in choosing proper analysis and mitigation strategies. There already
exist multiple taxonomies, e.g., from the domain of self-adaptive systems.
However, they do not fit the abstraction of software architecture and do
not focus on security-related quality properties like confidentiality.
To address this, we present a classification of architectural uncertainty re-
garding confidentiality. It enables precise statements about uncertain in-
fluences and their impact on confidentiality. It raises awareness of uncer-
tainty properties, enables knowledge transfer to non-experts, and serves
as a baseline for discussion. Also, it can be directly integrated into exist-
ing notions of data flow diagrams for uncertainty-aware confidentiality
analysis. We evaluate the structural suitability, applicability, and purpose
of the classification based on a real-world case study and a user study.
The results show increased significance compared to existing taxonomies
and raised awareness of the impact of uncertainty on confidentiality.

Keywords: Software Architecture · Uncertainty · Confidentiality

1 Introduction

Today’s software systems become increasingly complex. With growing size and
connections, ensuring software quality becomes a major challenge. This is espe-
cially true for security-related quality properties like confidentiality. Confiden-
tiality demands that “information is not made available or disclosed to unautho-
rized individuals, entities, or processes” [17]. Violations of confidentiality cannot
only harm user acceptance [45] but also have legal consequences [16]. To identify
flaws early and to avoid costly repairs of running systems [4], design-time confi-
dentiality analyses have been proposed [39,42]. Based on analyzing the software

S. Hahner, S. Seifermann, R. Heinrich, and R. Reussner, “A Classification of Software-Architectural Uncertainty Regarding Confidentiality,”
in E-Business and Telecommunications (ICETE), Springer, 2023. doi: 10.1007/978-3-031-36840-0_8

2 S. Hahner et al.

architecture and its data against confidentiality requirements [15], the software
design can be enhanced and statements about potential violations can be made.
Here, data flow-oriented analyses became common because “problems tend to
follow the data flow, not the control flow” [40].

However, especially in early development and in complex systems of systems,
the software architecture is subject to uncertainty. Uncertainty describes “any
departure from the unachievable ideal of complete determinism” [43]. This does
not only affect decision making—also known as the cone of uncertainty [28]—but
even blurs which decisions should be prioritized. When not managed properly,
the lack of awareness of uncertainty can void a system’s confidentiality. Also,
the OWASP Top 10 [29] lists issues like insecure design as top security risks.

Multiple taxonomies were defined to better understand the nature of un-
certainty [31,32,43]. However, they mostly originate from the domain of self-
adaptive systems and do not focus on confidentiality. Consequences are the lack
of applicability and an increase of ambiguity. The relation of software archi-
tecture, confidentiality and uncertainty remains unclear [13]. And while “there
is growing consensus on the importance of uncertainty” [27], much is yet un-
known regarding the impact of uncertainty on software systems [10]. Hezavehi
et al. [27] conducted a survey on uncertainty. They find a “lack of systematic
approaches for managing uncertainty” [27] and that uncertainty should already
be addressed at design time. This statement is supported by the work of Troya
et al. [41]. They conducted a Systematic Literature Review (SLR) and analyzed
123 papers. They state that software engineers require more help “to identify the
types of uncertainty that can affect their application domains” [41].

In previous work [38], we presented a unified model to express data flows
and analyze confidentiality violations in software architectures. We mined mod-
eling primitives from existing approaches [37,42], defined a meta model and an
analysis using label propagation. We also showed its integration into existing
Architectural Description Languages (ADLs) like Palladio [33]. The underlying
goal of a data-centered approach without predefined analysis goals or data flow
constraints is the possibility of user-defined confidentiality analyses [39]. How-
ever, the previous approach was only able to analyze confidentiality with perfect
knowledge, i.e., by excluding uncertainty about software systems and its data.

In this paper, we present a classification scheme of architectural uncertainty.
This classification is specifically designed to express uncertainty on the architec-
tural abstraction level regarding confidentiality. We build on the existing data
flow model [38] and consider the impact of uncertainty on the software archi-
tecture’s confidentiality. Here, we focus on known unknowns, i.e., uncertainty
that can be identified but not always resolved immediately. The classification
shall help architects to describe uncertain influences more precisely, find mitiga-
tion and analysis strategies, raise awareness of relevant uncertainty attributes,
enable the reuse of knowledge, and serve as a baseline for discussion. We ar-
gue that making uncertainty explicit enhances the overall design and simplifies
phase containment, i.e., fixing defects in the same phase as they appear. Here,
uncertainty should not be avoided but become a source for improvement [11].

A Classification of Architectural Uncertainty regarding Confidentiality 3

We start by discussing the state of the art in Section 2 and present the contri-
butions of this paper (C1 and C2) thereafter.

C1 First, we define architectural uncertainty and relate uncertainty to Architec-
tural Design Decisions (ADDs) and confidentiality in Section 3. We extract
relevant classification categories and discuss their applicability to describe
the impact of uncertainty on confidentiality. Based on this, we present an
uncertainty classification scheme in Section 4.

C2 Second, we show how the classification helps identifying the impact of un-
certainty on confidentiality in Section 5. We demonstrate how the classified
impact of uncertainty maps can be modeled using the unified modeling prim-
itives [38]. We also provide a reference set of classified uncertainties.

The evaluation of the classification in Section 6 is based on the guidelines of
Kaplan et al. [19]. The authors propose to evaluate the structure’s suitability,
the applicability, and the purpose. This enables us to make statements not only
about the appropriateness and the quality of the classification as such, but also
consider its reliability and ease of use, as required by usable security [36]. The
evaluation also includes the metrics-based comparison to the state of the art, i.e.,
existing taxonomies of uncertainty. We conducted a user study with researchers
from the software architecture domain and a real-world case study based on the
German open-source contact-tracing app Corona Warn App [34].

The results show increased significance compared to existing taxonomies, i.e.,
better applicability and more precise classification. The user study shows that
the classification scheme helps in understanding and analyzing uncertainty and
is a satisfying base for discussions. This cannot only be seen in the gathered
data but has also been independently reported by multiple study participants.
Section 7 concludes this paper and gives an outlook on future application areas.

2 State of the Art

In this section, we give an overview of the state of the art based on three cate-
gories: Uncertainty taxonomies, uncertainty in software architecture, and ADDs.

Uncertainty taxonomies. To better understand uncertainty, researchers created
several taxonomies [5,8,26,31,32,43]. Walker et al. [43] present a taxonomy of un-
certainty using three dimensions. The location describes where the uncertainty
can be found, e.g., in the model input or context. The nature distinguishes be-
tween epistemic (i.e., lack of knowledge) and aleatory (i.e., natural variability)
uncertainty. Last, the level describes how much is known about the uncertain
influence. Although this taxonomy has been the baseline for many others, it
does not specifically aim to describe software-related uncertainty. Perez-Palacin
and Mirandola [31] build upon this classification in the context of self-adaptive
systems. They adjust the dimension location to better fit software models. Bures
et al. [5] adapt this taxonomy again to “fit the needs of uncertainty in access

4 S. Hahner et al.

control” [5]. Although this work only considers access control in Industry 4.0 sce-
narios, it is also a good foundation for our classification. Esfahani and Malek [8]
describe characteristics of uncertainty and hereby focus on the variability and
reducibility of different sources of uncertainty. Mahdavi-Hezavehi et al. [26] pro-
pose a classification framework of uncertainty. They aim at architecture-based,
self-adaptive system but do also not consider security, privacy, or confidentiality.
Also related is the uncertainty template by Ramirez et al. [32]. They present
a scheme to describe uncertainty sources for dynamically adaptive systems in
requirements, design, and runtime. Due to the different scope, they describe
uncertainty in software architecture as inadequate design which is not precise
enough to identify the impact of architectural uncertainty on confidentiality.

Uncertainty in software architecture. Numerous approaches exist to handle un-
certainty in software architecture [7,22,25]. For the sake of brevity, we only sum-
marize to work related most. For an in-depth analysis, refer to the previously
mentioned surveys [27,41]. GuideArch [7] and PerOpteryx [22] are approaches to
explore the architectural solution space under uncertainty. Both approaches try
to achieve optimal architectures under given constraints and degrees of freedom
but do not aim at security-related properties like confidentiality. Lytra and Zdun
[25] propose an approach to combine ADDs under uncertainty by utilizing fuzzy
logic. Although this approach considers the software design, the representation
of uncertainty as fuzzy values alone is not suitable to analyze confidentiality.

Architectural design decisions. The relation between design decisions and un-
certainty has already been described more than two decades ago [28]. Kruchten
[23] presents an ontology of ADDs. The author distinguishes between existence,
property and executive decisions and provides an overview of ADDs attributes.
This is especially relevant when considering uncertainty that can void existing
decisions and require software architects to backtrack. Jansen and Bosch [18] see
software architecture as a composition of ADDs. This shows how uncertainty,
e.g., about the system context, can hinder good software design as the best deci-
sion might not be found. Although both approaches do not focus on uncertainty,
they inspired our classification which is strongly coupled to architectural design.

3 Uncertainty, Confidentiality, and Software Architecture

In this section, we give an overview of uncertainty in software architecture. We
propose the term architectural uncertainty and describe the relation of uncer-
tainty, ADDs and confidentiality based on an exemplary architecture model.
Afterwards, we discuss existing classifications of uncertainty and their applica-
bility to describe the relation of architectural uncertainty and confidentiality.

When speaking about uncertainty in software architecture, we propose speak-
ing in terms of impact rather than only considering the uncertainty’s type or
source. This enables software architects to focus on its mitigation during design,
e.g., to enhance confidentiality. Also, when interpreting an architecture as set of
ADDs [18], the impact is one of the most important properties to consider [28].

A Classification of Architectural Uncertainty regarding Confidentiality 5

We understand architectural uncertainty as uncertainty, that can be described
on architectural abstraction and where (early) awareness enables considering its
impact on quality attributes like confidentiality. We do not use the term design
time, as the real impact of the uncertainty might happen later, e.g., at runtime.
We also do not only refer to known unknowns, as this only implicates aware-
ness which is too imprecise. We refine this term by requiring the architectural
abstraction, e.g., as part of an architectural model with specified impact on
software-architectural elements, e.g., software components, interfaces, or hard-
ware resources. Here, we also exclude higher orders of uncertainty [31] as their
impact cannot immediately be expressed due to the lack of awareness. However,
awareness can be raised with increasing knowledge, e.g., by asking a domain
expert [30] or by using a classification scheme for systematic treatment [43].

Figure 1 shows an example of two architectural uncertainties and their im-
pact on confidentiality [12]. The diagram represents a simplified Online Shop
that consists of two components and two hardware resources. The first uncer-
tainty U1 is the allocation of the Database Service that stores the Online Shop
data. The second uncertainty U2 is the trustworthiness of the provider of the
cloud service, a potential deployment location of the Database Service. Both
uncertainties can be annotated in the architectural model and have a poten-
tial impact on confidentiality, e.g., due to legal requirements like the GDPR [6].
However, this example also shows the difference between awareness and mitiga-
tion: While deciding the allocation could resolve Uncertainty U1, Uncertainty
U2 potentially remains and requires further ADDs, e.g., the encryption of data.

Online Shop Database Service

?

On Premise Server Cloud Service

«deploy»

«deploy»

U1: Allocation

Customer

«uses»

?
U2: Provider Trustworthiness

Fig. 1. Combined component and deployment architecture model with uncertainty

When dealing with architectural uncertainty, considering ADDs helps to struc-
ture the design process. In the beginning of this process, much is yet unknown
or imprecise and ADDs are made under assumptions [28], e.g., that the provider
is trustworthy in Uncertainty U2. Making this uncertainty explicit can help to
mark decisions as challenged [23] and consider backtracking. While some uncer-
tainty only exists due to not yet decided ADDs (e.g., Uncertainty U1), other
cannot be reduced immediately [31] (e.g., Uncertainty U2). Still, creating aware-

6 S. Hahner et al.

ness of the impact of uncertainty can help refining the architecture and making
more informed statements about confidentiality. This impact can be understood,
modeled, simulated, analyzed, measured and—eventually—managed.

There are multiple relevant properties of ADDs that help in the mitigation
of uncertainty. The number of solutions of related ADDs [18] can help to es-
timate whether the uncertainty can already be fully reduced at design time.
We distinguish between closed sets that could at least partially be analyzed and
open sets with a potentially infinite number of solutions or configurations. In our
example, Uncertainty U1 relates to the ADD of the allocation and represents
a closed set. This can be analyzed, e.g., by combining design space exploration
with dataflow analysis [44]. But even with a closed set of alternatives, one cannot
guarantee that a given ADD might not be challenged in the future [23] due to
changes in requirements or the system’s execution context. Thus, when speaking
about decisions under uncertainty, considering the probability, possibility and
costs of revisions can help to quantify the risk. This awareness also helps in the
prioritization of ADDs and deciding whether existing mitigation is sufficient.

However, only considering ADDs to understand the impact of uncertainty
is not enough because uncertainty might not be directly connected to a single
decision (e.g., resolving Uncertainty U2). Thus, we argue to also consider which
architectural elements are affected, rather than only considering this transitively
via the impact of ADDs. This does not only help understanding the consequences
of uncertain influences but also helps to connect these to architecture-based anal-
yses. In our example, modeling and analyzing the data flows [38,39] between the
Online Shop component and the Database Service component helps determining
whether the impact of Uncertainty U2 is a problem for confidentiality.

To choose proper decision, mitigation, and analysis strategies, software archi-
tects need to be aware of the impact of uncertainty and be able to describe this
impact precisely. To support this activity, we analyzed existing taxonomies and
classifications of uncertainty. We gathered, assessed and adapted categories (i.e.,
dimensions, or characteristics) and options with the purpose of more precisely
classifying uncertainty in relation to confidentiality. The following discussion is
based on existing taxonomies [5,8,26,31,32,43] as well as recent systematic liter-
ature reviews and surveys on uncertainty [41,27]. Table 1 gives an overview of
available categories and options derived from related work.

Uncertainty is often described with its location. However, there is no common
distinction between the source and the impact of an uncertain influence. Also,
there is no common understanding of the term model and its boundaries as the
taxonomies originate from different research areas. Thus, uncertainty U1 could
be classified as context, model structural, model technical, and belief uncertainty.
Such ambiguity can invalidate the purpose of a taxonomy. Regarding the level,
two different approaches exist. Some classifications define the level based on the
description of uncertainty, e.g., by using statistical means or scenarios. Others
refer to the orders of uncertainty [1]. As already discussed, we focus on known
unknowns, i.e., the first order of uncertainty. However, even in this order exist
different nuances, e.g., recognized ignorance compared with statistical data.

A Classification of Architectural Uncertainty regarding Confidentiality 7

Table 1. Available categories and options to classify uncertainty used in related work

Available Categories Available Options

Location: Describes where
uncertainty originates from
or where it manifests itself
within the system or model
[5,26,31,43,41]

Context: system boundaries [31,43], user input [5], execution con-
text [26]; Model structural: existence of elements [41], elements
and their relationship [43,31], structural differences [26], components
and their properties [5]; Model technical: software and hardware
[43]; Input: input types [43], input values [31], measurement devia-
tion [41]; Parameters: parameter calibration [43,31]; System be-
havior: actual behavior [5], including parameters and actions [41];
Belief : uncertain statements about system and environment [41];

Level: Describes how much
is known about the uncer-
tain influence and how the
uncertainty can be described
[43,26,31,5,1]

Statistical: Statistical data available [43,26]; Scenario: Possible
scenarios available without statistical data [43,26,1]; Recognized
ignorance: Awareness of uncertainty, but cannot be further de-
scribed [43]; Total ignorance: Lack of awareness of uncertainty
[43]; Orders of Uncertainty: No uncertainty (0th), known uncer-
tainty (1st), lack of awareness, i.e., unknown unknowns (2nd), lack
of awareness and process (3rd), meta-uncertainty (4th) [1,5,31];

Nature: Describes the
essence and character of the
uncertainty [5,26,31,43,41]

Aleatory: Uncertainty due to inherent variability or randomness
[5,26,31,43,41]; Epistemic: Uncertainty due to a lack of knowledge
[5,26,31,43,41];

Manageability: Describes
whether the uncertainty can
be reduced [8,43]

Reducible: Uncertainty can be fully reduced after acknowledgement
[8,43]; Irreducible: Uncertainty cannot be further reduced at this
point in time [8,43];

Emerging time: Describes
at which state of the
software development uncer-
tainty arises [27,26,41,31,32]

Requirements time: As requirements are defined [32,41]; Design
time: As the software system is designed [32,27,41,26]; Verifica-
tion: At verification of software models [41]; Testing: During soft-
ware testing [27,41]; Implementation: As the software gets imple-
mented [41]; Run time: During software execution [27,26,41,31,32];

Impact on Quality: De-
scribes how uncertainty af-
fects quality properties [27]

Performance: Impact on performance [27]; Resources: Impact on
resource consumption [27]; Safety: Impact on a system’s safety [27];

Relationship: The relation
between uncertainties [32]

Directed: Directed relationship or influences between uncertainties
[32]; Related: Unspecified relationship between uncertainties [32];

Source: Potential sources of
uncertainty [31,8,26,32]

Several publications list sources of uncertainty, e.g., human in the
loop, abstraction, missing requirements, inadequate design, . . .

Many classifications refer to the nature of uncertainty. However, this category
is questioned [8,20] as it depends on the point of view and is often not clearly
distinguishable. Thus, we prefer the category manageability since it focuses on
the reducibility. Besides the category emerging time, we propose to also consider
the resolution of uncertainty, i.e., at which time the impact of uncertainty can be
understood and managed. Regarding design-time confidentiality analyses, it is
valuable to know whether uncertainty can be directly analyzed (e.g., Uncertainty
U1) or must be mitigated in later phases (e.g., Uncertainty U2).

The impact on quality is an important as not all uncertainties affect a sys-
tem’s confidentiality. To focus analysis capabilities, software architects must
know about potential impacts and their severity. Although we focus on con-
fidentiality, the analysis of multiple properties is possible, e.g., by using design
space exploration combined with dataflow analysis, as demonstrated by Walter
et al. [44]. The remaining categories are only defined for sources of uncertainty.
Still, such information can be valuable, e.g., to describe the relation of uncer-
tainty to ADDs like the allocation to Uncertainty U1.

8 S. Hahner et al.

4 Classification of Architectural Uncertainty

In this section, we present a classification scheme to aid software architects in
understanding the impact of architectural uncertainty on confidentiality. This
shall raise awareness of properties of uncertainty and their relevance for choos-
ing appropriate ADDs and mitigation strategies. We intentionally speak of a
classification rather than a taxonomy because we focus on a subset of uncer-
tainty, i.e., known unknowns on architectural abstraction.

The classification scheme consists of 8 categories with a total of 27 options
and is shown in Table 2. The categories are partially based on taxonomies of
uncertainty [5,8,26,31,32,43], related work on ADDs [18,23] and ADLs like Palla-
dio [33]. A category-based classification helps to group uncertainties and identify
similar characteristics and mitigation approaches. Once classified, the informa-
tion can be reused across different software architectures. This is possible due to
the connection between architectural uncertainty and reusable ADDs. To create
this classification, we assessed and adapted existing categories and combined or
refined their options (see Section 3). We repeated this process until each cate-
gory fulfilled its purpose, i.e., being able to describe and partition the impact of
uncertainty on confidentiality in software architectures.

In this work, we focus on confidentiality requirements in the design time.
Thus, the categories should be interpreted from an architectural viewpoint, e.g.,
while modeling a software system. In the following, we explain each category.
We provide information about the rationale and possible benefits of applying
each category. We also define whether the options are unordered (i.e., nominal)
or ordered without defined distance (i.e., ordinal), and single or multiple choice.
Last, we specify if the gained knowledge by classification can be reused, i.e., if it is
specific for the uncertainty type, or the software architecture under investigation.

Location and Architectural Element Type. The first two categories are concerned
with the location of the uncertainty impact. Previous taxonomies [5,26,31,43] al-
ready considered “where the uncertainty manifests itself within the model” [31]
but did not explicitly relate to an ADL. Since the location of the impact is
one of the most important properties for design-time confidentiality analysis,
we connect this category with the viewpoints and element types of Palladio [33].
Compared to existing taxonomies, this enables more precise description and mit-
igation planning because we can model uncertainty and its relation to existing
architecture elements. While Location is on the abstraction of the viewpoint (e.g.,
structure, or behavior), the Architecture Element Type describes the concrete
elements (e.g., components, or hardware resources) affected by the uncertainty.
Because this—especially regarding confidentiality—may affect multiple elements
at once, both categories are multiple choice. Also, both categories are nominal
as there is no order between location or element types. By understanding which
elements and viewpoints are affected, software architects can assess responsibili-
ties and evaluate mitigation methods. The knowledge gained about the location
is uncertainty-specific and can thus be reused across architectural models.

A Classification of Architectural Uncertainty regarding Confidentiality 9

Table 2. Categories and options of the architectural uncertainty classification.

Location: Describes where uncertainty manifests itself within the architecture

System Structure Structure, e.g., components, their static wiring, assembly, and allocation
System Behavior Behavior of the system and its components as well as their communication
System Environment System’s context, including hardware resources and the external situation
System Input Inputs provided by external actors, e.g., people using the software system

Architectural Element Type: Elements to which an uncertainty can be assigned

Component Assignable to software components, e.g., related to their allocation
Connector Assignable to, e.g., wires between components, or communication
Interface Assignable to interfaces, e.g., signatures, parameters, and return values
Hardware Resource Assignable to hardware resources, e.g., servers, and external actors
Behavior Description Assignable to behavior descriptions, e.g., algorithms or user input

Type: How much is known about the uncertainty and how can it be described

Statistical Uncertainty Uncertainty describable with statistical means, e.g., stochastic expressions
Scenario Uncertainty Distinct scenarios depending on the uncertain outcome, no statistical means
Recognized Ignorance Awareness of the uncertainty but no mitigation or description strategy

Manageability: Can more knowledge or appropriate means reduce the uncertainty

Fully Reducible Reducible, e.g., by acquiring more knowledge, or comprehensive simulation
Partial Reducible At least partially reducible, e.g., by applying scenario-based mitigation
Irreducible Uncertainty cannot be further reduced, e.g., due to its aleatory nature

Resolution Time: Time at which the uncertainty is expected to be fully resolved

Requirements Time As soon as requirements are defined, e.g., confidentiality requirements
Design Time As soon as the systems is designed, e.g., its structure, or components
Realization Time As soon as the system or parts of it are implemented and deployed
Runtime As knowledge is gained from testing and system operations, e.g., monitoring

Reducible by ADD: Uncertainty resolvable by an architectural design decision

Yes Uncertainty can be reduced by taking an ADD, i.e., by designing the system
in a way that the impact of the uncertainty is (partially) mitigated

No Uncertainty is not resolvable or treatable by taking an ADD

Impact on Confidentiality: Potential impact on confidentiality requirements

Direct Direct impact on confidentiality, e.g., by directly affecting personal user data
Indirect Impact only in conjunction with contextual factors, ADDs or uncertainties
None No impact on confidentiality, e.g., if only publicly available data is affected

Severity of the Impact: Describes the severity if uncertainty is not mitigated

High Total loss of confidentiality, or sensitive data, e.g., an admin’s password
Low Access to restricted information could be obtained but the damage is limited
None No loss of confidentiality expected at all

10 S. Hahner et al.

Type and Manageability. The next two categories specify how much is known
about the uncertain influence and whether the uncertainty can be reduced. Other
taxonomies [5,31] only specify this in terms of levels on a scale from knowledge
to ignorance [1] which is too imprecise to classify uncertainty for mitigation.
With the Type, we describe how much is known about the uncertainty, based on
the definitions by Walker et al. [43]. All options represent known unknowns [31]
but also specify how this knowledge can be represented for mitigation, e.g., if
there is statistical data available. Manageability states whether we can control
or reduce the impact of the uncertainty at design time (see Data Protection by
Design [6]) or are only aware of it [8]. We do not consider the nature of the
uncertainty [43] because the manageability is closer to the uncertainty’s impact
[8]. Both categories are ordinal and single choice. By understanding how much is
known about an uncertain influence beyond awareness, one can choose appropri-
ate mitigation methods or choose to gather specific knowledge. The classification
depends on the context of the architecture under investigation. However, many
uncertainty types tend to be categorized similarly across architectures. For in-
stance, the allocation (see Uncertainty U1 in Section 3) can usually be described
scenario-based and be reduced in the design or realization time.

Resolution Time and Reducible by ADD. These categories relate uncertainty to
the architectural design using ADDs. The Resolution Time is based on the phases
of software development and can help to narrow down sources and responsibili-
ties. Since we focus on the impact of uncertainty on confidentiality, we consider
the expected full resolution time rather than the emerging time [27,31,32,41].
Also, we only include phases that are relevant from the point of view of design
time analyses. The category Reducible by ADD specifies whether the impact of
the classified uncertainty can at least be partially mitigated by a design deci-
sion. Making the connection between ADDs and uncertainty explicit [25] helps
to prioritize, e.g., check whether multiple or critical uncertainty impacts can be
tackled by a single decision. Both options are single choice, the options of the
Resolution Time are ordinal, reducibility is considered to be nominal. Also, both
categories are only uncertainty-specific and thus reusable.

Impact on Confidentiality and Severity of the Impact. The last two categories are
used to quantify the impact of uncertainty on confidentiality requirements. To
prioritize uncertainty with a critical impact, we combine the impact type with
its severity. A direct Impact on Confidentiality can void confidentiality even
without taking other factors, decisions, or uncertainties into account. Indirect
impact relates to such contextual properties. Severity of the Impact is based
on the confidentiality impact metrics of the open industry standard Common
Vulnerability Scoring System (CVSS) [9]. They refer to a high impact if a total
loss of confidential data or access to restricted information is expected. An impact
that is rated low implies that data can be stolen, but the information could not
be used directly or is limited. Both categories are single choice and ordinal.
The knowledge gained by classification can help in clustering and prioritizing
uncertainty and related ADDs but is specific for the architecture and its context.

A Classification of Architectural Uncertainty regarding Confidentiality 11

5 Applying the Classification for Confidentiality Analysis

In this section, we apply the previously defined classification to analyze the
impact of uncertainty on confidentiality. Confidentiality requirements are man-
ifold. They include the legal restriction of data processing, e.g., personal data
being regulated in the GDPR [6] but also organizational protection policies of
restricted data like an administrator’s password or encryption keys [9]. Thus,
when speaking about the impact of uncertainty on confidentiality, one has to
consider all relevant data in a software architecture. We achieve this by first
classifying uncertainty and then considering the impact of this uncertainty in
data flow-based confidentiality analysis [38,39].

Table 3. Exemplary classification of the uncertainty in the online shop example

U1: Allocation U2: Provider Trustworthiness

Location System Structure System Behavior / Environment
Architectural Element Type Component Behavior / Hardware Resource
Type Scenario Uncertainty Scenario Uncertainty
Manageability Fully Reducible Partial Reducible
Resolution Time Realization Time Runtime
Reducible by ADD Yes Yes
Impact on Confidentiality Direct Indirect
Severity of the Impact High Low

Table 3 shows an exemplary classification based on the online shop in Section 3.
While the allocation (U1) represents uncertainty in the structure of the architec-
ture and can be annotated to the deployable component, trustworthiness (U2)
of a resource provider affects the behavior and is located in the environment
of the system. Making the location explicit already helps in understanding the
impact in terms of architecture models, e.g., describable as possible scenarios or
model variations [30]. The allocation refers to the ADD of the same name and
can thus be fully resolved at realization time, e.g., by limiting possible deploy-
ment locations. The trustworthiness remains unclear even at runtime, but can
be partially mitigated, e.g., by enforcing encryption of data that flows to the
Database service. Regarding legal confidentiality requirements [6], the allocation
represents a serious and direct impact and can be prioritized over the trust-
worthiness which also depends on the allocation. Here, the classification helps
to connect uncertainties and ADDs and also helps to prioritize. If a decision is
revoked later, e.g., the deployment is changed to the Cloud Service, document-
ing classified uncertainties, assumptions and risk helps in reevaluation [23] and
potential backtracking. Note, this classification is only exemplary and also al-
lows to draw other conclusions due to the lack of contextual information in our
simplified example. A comprehensive reference set of architectural uncertainties
and their impact on confidentiality can be found in our data set [14].

12 S. Hahner et al.

Besides documentation and design, classifying uncertainty also helps in analysis
and mitigation. Here, several approaches have been proposed (see Section 2).
Perez-Palacin and Mirandola [30] distinguish between two mitigation paths:
modifying the model (i.e., making the required ADD) and managing a model
with uncertainty. These paths are a good fit to the previous discussion about
manageability and reducibility. However, to choose one of these paths, software
architects must be aware of the uncertain influence and require knowledge about
its potential impact and related ADDs and elements of the software architecture.

To analyze confidentiality under uncertainty, we demonstrate how to man-
age a model with uncertainty and integrate the classification results into the
previously presented data flow meta model [38]. This is possible because our
classification has been designed for confidentiality and both—the classification
scheme and the data flow meta model—relate to Palladio [33] as common ADL.

The unified modeling primitives [38] consist of nodes, pins, flows, behavior
and label assignments. Nodes represent structural elements of software systems,
e.g., processes, stores, or external entities. Pins represent their interfaces and
flows are used to connect multiple nodes through their pins. Nodes have a de-
fined behavior that assigns labels, e.g., based on labels at the node’s input pins,
constants, logical expressions or a combination of the above. We can follow the
data flow by propagating the assigned labels through the system and applying
the propagation function at each node. By comparing the labels at each node
to defined requirements that are formulated as data flow constraints [15,39], we
can analyze confidentiality.

Table 4. Mapping of architectural element types to data flow modeling primitives

Architectural Element Data Flow Modeling Primitive Impact of Uncertainty

Component Node (process or store) Existence and use of nodes
Connector Flow Existence of flows to nodes
Interface Pin (input or output) Existence and form of pins
Hardware Resource Label assignment Values of node assignments
Behavior Description Behavior (label propagation) Propagation function output

The modeling primitives are integrated into the control flow modeling of Palladio
[33,38]. Table 4 shows the mapping of Palladio elements used in our classifica-
tion to the meta model of the unified modeling primitives. It also shows how the
impact of uncertainty on these elements can be transformed and represented in
data flow models. As explained in Section 4, describing affected elements can
be used for mitigation planning and analysis. Regarding the data flow model-
ing primitives, structural uncertainty can alter the existence of nodes, pins, and
flows. Exemplary uncertain influences are component choices, interface defini-
tions, or system configuration. Uncertainty can also arise from the context of
a system, which is expressed by label assignments on nodes. Last, behavioral
uncertainty could alter the output of affected label propagation functions.

A Classification of Architectural Uncertainty regarding Confidentiality 13

 Node Label (Location)

?

Process

Data Store

Uncertainty Impact

Forward Behavior

Declassify Behaviorbuy

store

Database
 On Premise

buy

store

Database
 Cloud

buy

store

Database
 Cloud

buy

store

?user data

user data

store
 user data

?

Database
user data

Database
user data

 Cloud

 On Premise
user data

U2: Provider Trustworthiness

U1: Allocation

Fig. 2. Data flow diagrams of the running example with and without uncertainty

We demonstrate this mapping based on the Online Shop example whose uncer-
tainties (U1 and U2) have been classified in Table 3. Here, we are interested in
the confidentiality of user data that is processed in the Online Shop component
and then stored in a database. Figure 2 shows the resulting data flow diagrams,
following the adapted notation presented in [38]. In the upper part, we show
a non-deterministic data flow diagram under uncertainty (U1 and U2). In the
lower part, we show the impact of those uncertainties by rolling out the upper
diagram and listing all resulting, deterministic diagrams. This is possible be-
cause both uncertainties represent Scenario Uncertainty, and we are also aware
of all possible cases. Uncertainty U1 is caused by an unknown allocation and
represented by the two alternative label assignments Cloud and On Promise.
Uncertainty U2 is caused by the unknown provider trustworthiness that is rep-
resented by two alternative label propagation functions. While the Forward be-
havior passes incoming labels without modification, unauthorized behavior is
represented as Declassify Behavior that changes propagated labels.

By defining constraints on these labels, we can analyze the resulting data
flow diagrams on confidentiality violations. An exemplary constraint could pro-
hibit unencrypted user data to be declassified. Although this is only the case in
one of the possible data flows, to completely mitigate this issue, the On Premise
allocation has to be chosen. Alternatively, user data can be encrypted. By al-
tering propagation functions and data flow constraints, multiple scenarios under
different uncertainties can be analyzed. This can be automated with tool sup-
port by combining the presented approach [37,38,39] with data flow constraints
[15] and design space exploration. An initial approach has been realized by using
PerOpteryx [22] to analyze confidentiality under structural uncertainty [44].

14 S. Hahner et al.

6 Evaluation

In this section, we present the evaluation of our classification. First, we define
goals, questions and metrics and present the evaluation design. Afterwards, we
discuss the evaluation results as well as threats to validity and known limitations.

6.1 Goals, Questions, and Metrics

Konersmann et al. [21] state the lack of guideline-based evaluation in current soft-
ware engineering research. Especially taxonomies of uncertainty are often only
evaluated based on application examples [5,31] or not evaluated at all [32,43]. To
prevent this, we structure our evaluation according to the taxonomy evaluation
method of Kaplan et al. [19]. The authors propose to use a Goal-Question-
Metrics-plan [2] to evaluate the structure’s suitability, the applicability, and the
purpose of a classification. Table 5 summarizes the evaluation plan together with
the evaluation results. In the following, we give an overview.

We evaluate the structure’s suitability (G1), i.e., whether it permits the ap-
propriate classification of objects under study by having the right scope and
granularity. This includes the generality (Q1.1), where we measure if the classi-
fication is not too general but also not to specific. Here, low laconicity (M1.1.1)
indicates a too fine-grained and low lucidity (M1.1.2) indicates a too coarse-
grained classification. A good trade-off regarding the granularity is important
because we want to be able to differentiate between uncertainties without as-
signing a separate class to every instance. Also, the granularity must fit to the
purpose of classifying architectural uncertainty regarding confidentiality. The
appropriateness (Q1.2) asks whether the classification is complete (M1.2.1),
i.e., has enough categories, and whether it is sound (M1.2.2), i.e, has no un-
necessary categories. On the one hand, we shall be able to classify every archi-
tectural uncertainty that can have an impact on confidentiality. On the other
hand, categories and options that are never used, should not be maintained.
Last, the orthogonality (Q1.3) evaluates whether the taxonomy has overlapping
categories (M1.3). A lack in orthogonality implicates that options depend on
each other and can be removed to increase preciseness. Overall, a classification
with bad structural quality yield ambiguous results and shall be adapted.

We evaluate the applicability (G2), i.e., whether the classification is under-
standable and usable (see Usable Security [36]) by conducting a user study. Here,
we consider the reliability (Q2.1), i.e., whether participants have consistent re-
sults (M2.1). An ambiguous classification with inconsistent results indicates a
lack of preciseness. We evaluate the correctness (Q2.2) by comparing the classi-
fication results to a predefined gold standard and calculating the recall (M2.2)
based on classification hits and misses. A lack in correctness indicates that users
could not benefit from applying the classification. Last, we evaluate the ease of
use (Q2.3) based on the System Usability Scale (SUS) [24] (M2.3). Addition-
ally, we ask participants if they understand the categories and find them helpful
and whether they experienced a knowledge gain by participating in the user
study. A taxonomy has to yield consistent results to be usable.

A Classification of Architectural Uncertainty regarding Confidentiality 15

We evaluate the purpose (G3), i.e., the classification’s quality compared to ex-
isting taxonomies based on case study. We consider the relevance (Q3.1), i.e.,
whether each category helps the purpose of the classification (M3.1). In our
case, the purpose is understanding the impact of uncertainty on confidentiality.
The novelty (Q3.2) asks how many categories and options are new (M3.2.1) or
adapted (M3.2.2). Here, the sum of both metrics indicates the strength of the
relation of the classification to other taxonomies. Last, we consider the signifi-
cance (Q3.3) by measuring the classification delta (M3.3) of our classification
to other taxonomies. A positive delta indicates an increase in preciseness for
which we aim. If the classification fails the evaluation of purpose, it represents
no significant improvement over the state of the art.

6.2 Evaluation Design

Our validation comprises three properties. We evaluate the structural quality
(G1) by analyzing the classification and we perform a user study to evaluate
its applicability (G2). Our evaluation of purpose (G3) compared to the state of
the art is based on the real-world case study of the Corona Warn App [34]. In
the following, we describe the evaluation design in detail. Additional information
such as raw evaluation data and questionnaires can be found in our data set [14].

Structural Evaluation. We start the evaluation by considering generality (Q1.1)
and appropriateness (Q1.2). The calculation of the related metrics is based on
the guidelines of Kaplan et al. [19]. The authors also provide tool support. For
the metrics laconicity, lucidity, completeness, and soundness 1 represents the
best and 0 the worst result. Besides the categories and options of our classifi-
cation, this evaluation requires terms that describe uncertainties. We extracted
a total of 38 terms of existing taxonomies (see Section 3). Examples are Un-
certainty fully reducible by acquiring enough knowledge or Uncertainty refers to
user input. The full list of terms can be found in our data set [14]. To evaluate
the orthogonality (Q1.3) we construct a self-referencing orthogonality matrix
based on our classification’s categories and options. A category or option that
is implied by another is not orthogonal and thus overlapping. Based on the 27
options of our classification, we evaluate all 27 ∗ 27− 27 = 702 combinations.

User Study. We conduct a user study with ten researchers from the domain of
software architecture. First, they complete a self-assessment, where they describe
their prior knowledge related to the task, e.g., uncertainty, and software archi-
tecture. Then, we provide them with a one-page summary of our classification
(cf. Section 4) with all categories and options and also an application example
(cf. Section 5) that demonstrates how to use it. During the study, the partici-
pants have to classify two different tasks within 15 minutes time, respectively.
Each task consists of an architecture diagram, a short description (cf. Section 3),
and four uncertainty impacts to classify using our classification. We counterbal-
ance the task order to mitigate learning effects and anonymize the participants’
results. Last, they fill out a SUS (Q2.3) and a questionnaire related to their

16 S. Hahner et al.

understanding of our classification. No session takes longer than one hour to
mitigate fatigue effects. After gathering all results, we measure the reliability
(Q2.1) by calculating the percentage of agreement and the correctness (Q2.2)
by comparing them to a predefined gold standard and calculating the recall.

Case Study. The Corona Warn App [34] is a German digital contact tracing
app. It is publicly founded and open source. The source code of the app and the
server, as well as comprehensive documentation can be found on GitHub1. This
does not only include architecture documentation but also security analysis and
risk assessment. By rolling back design decisions and considering solutions for
problems and risks that are related to confidentiality, realistic uncertainties can
be analyzed. We created a collection of 28 uncertainties that are possible during
the design process based on the available documentation and ADDs. We use
this collection as baseline for the evaluation of the purpose. For each category,
we argue whether it helps to understand the impact of the uncertainties and
is thus relevant (Q3.1). This extends the evaluation of generality (Q1.1) and
appropriateness (Q1.2) based on our case study. We compare all categories to
other taxonomies [5,8,26,31,32,43] of uncertainty to evaluate the classification’s
novelty (Q3.2). Here, we discuss the origin and adaption compared to the state
of the art. We evaluate the significance (Q3.3) by classifying all 28 uncertain-
ties with our classification and with other taxonomies [5,26,31] with a related
purpose. As our goal is a higher precision for the impact of uncertainty, we aim
for a positive classification delta, i.e., a higher number of uncertainty classes.

6.3 Evaluation Results and Discussion

In the following, we present and discuss the evaluation results for each question
individually. Table 5 summarizes all goals, questions, and metrics as well as the
evaluation results.

Table 5. Evaluation plan with goals, questions, metrics, and evaluation results

Goal Questions Metrics Results

Structure’s Suitability Generality Laconicity, Lucidity 0.95, 0.70
Appropriateness Completeness, Soundness 0.97, 1.00
Orthogonality Orthogonality Matrix 695 of 702

Applicability Reliability Inter-Annotator Agreement 0.69
Correctness Recall 0.73
Ease of Use Usability Score 68.25

Purpose Relevance Fraction of Relevant Classes 1.00
Novelty Innovation, Adaptation 0.49, 0.51
Significance Classification Delta 0.54

1 https://github.com/corona-warn-app/

A Classification of Architectural Uncertainty regarding Confidentiality 17

Structure’s Suitability. To evaluate the structure’s suitability (G1) of the classi-
fication, we consider generality (Q1.1) and appropriateness (Q1.2) and we mea-
sured laconicity, lucidity, completeness, and soundness. These metrics are defined
for the leaves of a taxonomy, i.e., the 27 options of our classification. We gathered
a collection of 38 terms R that describe the object under study, i.e., architec-
tural uncertainties. In a laconic (M1.1.1) and thus non-redundant classification
C, each term can be described using exactly one option. The laconicity is the
fraction of terms that is uniquely describable: laconicity(C,R) = 36

38 = 0.95. We
argue that the remaining two redundant terms are totally acceptable and origi-
nate due to the increased precision regarding confidentiality: User input can be
classified as Input and Environment and uncertainty about non-confidentiality
data has both no impact and no severity. In a lucid (M1.1.2) classification,
each option describes no more than one term. Lucidity is the fraction of op-
tions that describe exactly one term: lucidity(C,R) = 19

27 = 0.70. Several terms
are described by the same option, e.g., Structure describes both uncertainty in
components and assembly. Another example is the realization time that includes
implementation and deployment as this can be simplified from a design time per-
spective. Here, we decided that more fine-grained options would only harm the
purpose of classifying and clustering uncertainties for understanding their im-
pact and mitigation. In a complete (M1.2.1) classification, there is no term than
cannot be described by at least one option. The completeness is thus calculated
as fraction of terms that can be described: completeness(C,R) = 37

38 = 0.97. The
completeness is reduced because we do not explicitly handle known unknowns
that never resolve. From a design time point of view, it does not matter whether
an uncertainty resolves at run time or never. In a sound (M1.2.2) classification,
there are no unnecessary options that are not required to describe at least one
term. soundness(C,R) = 27

27 = 1.0. The perfect result is expected, as we inten-
tionally build the classification to fit our purpose. To evaluate the orthogonality
(Q1.3), we constructed an orthogonality matrix (M1.3) and searched for im-
plications between options. We found overlapping only in 7 of 702 cases, e.g.,
uncertainty about the system’s input implies a behavioral description and there
exists the already discussed relation between no impact and no severity. How-
ever, none of the overlaps where comprehensive enough to justify the removal
of a category or an option. All results were satisfying, so we continued with the
second evaluation step as proposed by Kaplan et al. [19].

Applicability. To evaluate the applicability (G2), we conducted a user study
with researchers with knowledge about software architecture but no or only lit-
tle knowledge about uncertainty (for detailed results, please see our data set
[14]). Ten participants classified two architecture models with four uncertainties
each which yields a set of 80 classified uncertainties and 640 selected options [14].
To evaluate the reliability (Q2.1), we calculated the inner-annotator agreement
(M2.1) by finding the largest consensus for each uncertainty and each category.
The overall agreement is 69 percent. High agreement was measured in the cate-
gories Location, Impact on Confidentiality, Severity, and Reducible by ADD. The
lowest agreement was measured in the category Resolution Time. One explana-

18 S. Hahner et al.

tion is the earlier description of the category, which was ambiguous and has thus
been refined. To evaluate correctness (Q2.2), we compared the classifications to
our gold standard and calculated a recall (M2.2) of 0.73. Based on the partic-
ipants’ feedback, we find that the result can be explained with the short case
descriptions of about the quarter of a page and the hard timing constraints. As
also shown in Section 5, short descriptions of fictional architectures can leave a
large room for interpretation. In view of the fact that the participants had no
prior experience in classifying uncertainty, this result still is satisfying. Last, we
evaluated the ease of use (Q2.3) with an average SUS (M2.3) score of 68.25.
In the questionnaire, most of the categories were considered understandable and
helpful to describe the impact of uncertainty. The only outlier is the category
Type. However, the value of this category has already been discussed in mul-
tiple publications [26,43]. Additionally, we demonstrated in Section 5 that this
category helps in design-time confidentiality analysis. Also based on the partici-
pants’ feedback, we summarize that our classification is a sufficiently useful tool
to understand the impact of uncertainty but requires some familiarization. Most
of the participants welcomed a lively debate about their classifications after the
study sessions which is what we aimed for.

Purpose. To evaluate the purpose (G3), we first argue for the relevance (Q3.1)
based on the fraction of relevant classes (M3.1). The purpose of our classifica-
tion is to describe the impact of architectural uncertainty on confidentiality. The
Location has already been discussed in other work [5,31]. We use Architectural
Element Type because this enables the connection to architectural modeling and
analysis. We demonstrated this in Section 5 with analyzing data flow models
under uncertainty. We argue that Type and Manageability are better to describe
uncertainty than only to refer to its level because this helps in choosing appro-
priate mitigation strategies. E.g., a scenario-based, reducible uncertainty can be
handled different to a recognized, irreducible uncertainty. This has also been dis-
cussed in Section 5. Resolution Time, Reducible by ADD and both impact-related
categories can be used in prioritization together with connected ADDs. This pri-
oritization and connection to ADDs is important because it helps structuring the
software design and also helps focusing modeling and analysis capabilities. We
close that no category can omitted without significantly reducing the expressive-
ness and thus the fraction of relevant classes is 1.0. For the novelty (Q3.2), we
counted new (M3.2.1) and adapted (M3.2.2) categories and options. A cate-
gory or option is adapted if it is adopted or derived from another classification.
Examples for adopted categories are the Resolution Time or Severity of the Im-
pact. Examples for new options are the partial reducibility. We find the hard
distinction between manageable and irreducible not precise enough for design
time mitigation. Also in our running example, we were able to better under-
stand and partially reduce the impact of uncertainty. A full discussion of all 8
categories and 27 options can also be found in our data set [14]. We are right
in the middle between innovation (1735 = 0.49) and adaption (1835 = 0.51). This
is expected as we build upon existing taxonomies but extended them to fit our
purpose. Last, we evaluate the significance (Q3.3) by calculating the classifica-

A Classification of Architectural Uncertainty regarding Confidentiality 19

tion delta (M3.3). Our classification is able to distinguish the 28 uncertainties
of the case study into 21 classes. Other taxonomies yield between 4 and 8 classes.
Thus, the classification delta is 21−8

28 = 0.54. As we aimed for higher precision, a
value higher than 0 is sufficient. We conclude that the metrics indicate that our
classification fits its purpose, also compared to the state of the art.

6.4 Threats to Validity

We discuss threats to validity based on the guidelines by Runeson and Höst [35].
Regarding internal validity, the biggest threat is the evaluation of structure’s
suitability that has only been performed by the authors and is thus based on
their limited experience. However, we adhered to the metrics and guidelines of
Kaplan et al. [19]. The external validity and generalizability of our results is
threatened by the number of participants in our user study and the selection
of the case study. Still, we argue that both were large enough to identify a
general trend of applicability and purpose. The participating researchers deal
with software architecture in their daily work and the Corona Warn App is a
large open-source system that is actively observed by the community. Additional
information on the construction of the case study can be found here [3]. To
face threats to construct validity, we applied a GQM-based evaluation plan [19].
Additionally, the SUS provides a standardized format, which might not fit the
evaluation of classifications. We mitigated this using a questionnaire which yields
similar results regarding the usability. To enhance reliability and replicability by
other researchers, we publish all evaluation data [14].

6.5 Limitations

We are aware of three limitations of our classification. First, we only focus on
confidentiality as central quality attribute. While this reduces the applicability,
we did this intentionally to obtain more precise results for mitigation. For ex-
ample, the focus on confidentiality at design time enables the connection to a
data flow meta model [38] for design time confidentiality analysis. Second, the
classification is focused on Component Based Software Engineering (CBSE) and
works best based on architectural modeling. This was also an explicit design de-
cision due to fit existing modeling [33,38] and analysis [37,39,42] approaches for
confidentiality. Still, most categories are general enough to be used even without
explicit models, e.g., Type, Manageability, or Resolution Time.

Last, the classification provides no assistance for the transitive impact of
uncertainty. The direct impact is often not the location where the uncertainty
affects confidentiality and where it can be mitigated. In our exemplary appli-
cation in Section 5, the uncertain provider’s trustworthiness could not only di-
rectly affect the data base but indirectly other parts of the system. However, to
face such propagation effects, a precise description of uncertainty—such as our
classification—is required in the first place. Additionally, the propagation, map-
ping, and analysis of uncertainty for design-time confidentiality analysis requires
tool-support as “detecting confidentiality issues manually is not feasible” [37].

20 S. Hahner et al.

7 Conclusion

In this paper, we presented a classification of architectural uncertainty to de-
scribe its impact on confidentiality. We explained the relation of software archi-
tecture, uncertainty, and confidentiality based on existing classifications. Then,
we defined our uncertainty classification and showed how the gained knowledge
can be used for mitigation. We demonstrated the mapping of classified uncer-
tainties to an existing data flow model for design time confidentiality analysis.
This shall help software architects to better understand the different uncer-
tainty types and analyze their impact. The evaluation showed satisfying results
regarding the structural quality, the applicability, and the significance of our
classification compared to the state of the art.

Our work benefits software architects in terms of more precise statements
about architectural uncertainty and awareness of its different types. As several
categories are reusable, this also enables knowledge transfer and reduces the
required expertise for mitigating uncertainty. It is also a good baseline for dis-
cussion and assessment of uncertainty impacts. This has also been confirmed by
our user study. Our classification helps to understand uncertainties and also to
document and to prioritize ADDs. This can shorten the span of required back-
tracking in case of challenged decisions. By making design time confidentiality
analyses uncertainty-aware, more comprehensive statements about confidential-
ity are possible. This shall also help in building more resilient software systems.

In future work, we want to tackle the limitation of manual annotation and
analysis of the impact of uncertainty. Based on the presented classification, we
want to create assistance for modeling and propagating uncertainty through the
software architecture. We also want to create guidelines for better understanding
different types of uncertainty and their potential impact on confidentiality. This
shall not only enhance reliability and correctness of uncertainty classification, but
also enable software architects to identify and mitigate the transitive impact of
uncertainty and to make statements about confidentiality under uncertainty.

Acknowledgments. This work was supported by the German Research Foun-
dation (DFG) under project number 432576552, HE8596/1-1 (FluidTrust), as
well as by funding from the topic Engineering Secure Systems (46.23.03) of the
Helmholtz Association (HGF) and by KASTEL Security Research Labs. We like
to thank Niko Benkler, who helped in developing this classification during his
Master’s thesis. We also like to thank all participants of the user study.

References

1. Armour, P.G.: The five orders of ignorance. Communications of the ACM 43(10)
(2000)

2. Basili, V.R., Weiss, D.M.: A Methodology for Collecting Valid Software Engineer-
ing Data. TSE pp. 728–738 (1984). https://doi.org/10.1109/TSE.1984.5010301

3. Benkler, N.: Architecture-based Uncertainty Impact Analysis for Confidentiality.
Master’s thesis, Karlsruhe Institute of Technology (KIT) (2022)

https://doi.org/10.1109/TSE.1984.5010301
https://doi.org/10.1109/TSE.1984.5010301

A Classification of Architectural Uncertainty regarding Confidentiality 21

4. Boehm, B., Basili, V.: Defect reduction top 10 list. Computer 34(1), 135–137 (2001)
5. Bures, T., et al.: Capturing Dynamicity and Uncertainty in Security and Trust via

Situational Patterns. In: ISoLA. pp. 295–310. Springer (2020). https://doi.org/10.
1007/978-3-030-61470-6_18

6. Council of European Union: REGULATION (EU) 2016/679 (General Data Protec-
tion Regulation) (2016), https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04,
accessed 05/11/2022

7. Esfahani, N., et al.: GuideArch. In: ICSE. pp. 43–52 (2013). https://doi.org/10.
1109/ICSE.2013.6606550

8. Esfahani, N., Malek, S.: Uncertainty in Self-Adaptive Software Systems. In: Soft-
ware Engineering for Self-Adaptive Systems II, pp. 214–238. Springer (2013).
https://doi.org/10.1007/978-3-642-35813-5_9

9. FIRST: CVSS v3.1 specification document, https://www.first.org/cvss/v3.1/
specification-document#2-3-Impact-Metrics, accessed 05/11/2022

10. Garlan, D.: Software engineering in an uncertain world. In: Proceedings of the
FSE/SDP workshop on Future of software engineering research - FoSER ’10. p. 125.
ACM Press (2010). https://doi.org/10.1145/1882362.1882389

11. Grassi, V., Mirandola, R.: The Tao way to anti-fragile software architectures: the
case of mobile applications. In: ICSA-C. pp. 86–89. IEEE (2021). https://doi.org/
10.1109/ICSA-C52384.2021.00021

12. Hahner, S.: Architectural access control policy refinement and verification under
uncertainty. In: ECSA-C (2021)

13. Hahner, S.: Dealing with Uncertainty in Architectural Confidentiality Analysis. In:
Proceedings of the Software Engineering 2021 Satellite Events. pp. 1–6. GI (2021)

14. Hahner, S., et al.: Companion data set, https://doi.org/10.5281/zenodo.6814107
15. Hahner, S., et al.: Modeling Data Flow Constraints for Design-Time Confiden-

tiality Analyses. In: ICSA-C. pp. 15–21. IEEE (2021). https://doi.org/10.1109/
ICSA-C52384.2021.00009

16. Isaak, J., Hanna, M.J.: User Data Privacy. Computer 51(8), 56–59 (2018). https:
//doi.org/10.1109/MC.2018.3191268

17. ISO: ISO/IEC 27000:2018(E) Information technology – Security techniques – Infor-
mation security management systems – Overview and vocabulary. Standard (2018)

18. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design De-
cisions. In: WICSA. pp. 109–120 (2005). https://doi.org/10.1109/WICSA.2005.61

19. Kaplan, A., et al.: Introducing an evaluation method for taxonomies. In: EASE.
ACM (2022). https://doi.org/10.5445/IR/1000145968, accepted, to appear

20. Kiureghian, A.D., Ditlevsen, O.: Aleatory or epistemic? does it matter? Structural
Safety 31, 105–112 (2009). https://doi.org/10.1016/j.strusafe.2008.06.020

21. Konersmann, M., et al.: Evaluation methods and replicability of software architec-
ture research objects. In: ICSA. IEEE (2022), accepted, to appear

22. Koziolek, A., et al.: PerOpteryx: automated application of tactics in multi-objective
software architecture optimization. In: QoSA-ISARCS. pp. 33–42. ACM (2011).
https://doi.org/10.1145/2000259.2000267

23. Kruchten, P.: An Ontology of Architectural Design Decisions in Software-Intensive
Systems. In: 2nd Groningen workshop on software variability. pp. 54–61 (2004)

24. Lewis, J.R.: The system usability scale: past, present, and future. International
Journal of Human–Computer Interaction 34(7), 577–590 (2018). https://doi.org/
10.1080/10447318.2018.1455307

25. Lytra, I., Zdun, U.: Supporting architectural decision making for systems-of-
systems design under uncertainty. In: SESoS. pp. 43–46. ACM (2013). https:
//doi.org/10.1145/2489850.2489859

https://doi.org/10.1007/978-3-030-61470-6_18
https://doi.org/10.1007/978-3-030-61470-6_18
https://doi.org/10.1007/978-3-030-61470-6_18
https://doi.org/10.1007/978-3-030-61470-6_18
https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04
https://doi.org/10.1109/ICSE.2013.6606550
https://doi.org/10.1109/ICSE.2013.6606550
https://doi.org/10.1109/ICSE.2013.6606550
https://doi.org/10.1109/ICSE.2013.6606550
https://doi.org/10.1007/978-3-642-35813-5_9
https://doi.org/10.1007/978-3-642-35813-5_9
https://www.first.org/cvss/v3.1/specification-document#2-3-Impact-Metrics
https://www.first.org/cvss/v3.1/specification-document#2-3-Impact-Metrics
https://doi.org/10.1145/1882362.1882389
https://doi.org/10.1145/1882362.1882389
https://doi.org/10.1109/ICSA-C52384.2021.00021
https://doi.org/10.1109/ICSA-C52384.2021.00021
https://doi.org/10.1109/ICSA-C52384.2021.00021
https://doi.org/10.1109/ICSA-C52384.2021.00021
https://doi.org/10.5281/zenodo.6814107
https://doi.org/10.1109/ICSA-C52384.2021.00009
https://doi.org/10.1109/ICSA-C52384.2021.00009
https://doi.org/10.1109/ICSA-C52384.2021.00009
https://doi.org/10.1109/ICSA-C52384.2021.00009
https://doi.org/10.1109/MC.2018.3191268
https://doi.org/10.1109/MC.2018.3191268
https://doi.org/10.1109/MC.2018.3191268
https://doi.org/10.1109/MC.2018.3191268
https://doi.org/10.1109/WICSA.2005.61
https://doi.org/10.1109/WICSA.2005.61
https://doi.org/10.5445/IR/1000145968
https://doi.org/10.5445/IR/1000145968
https://doi.org/10.1016/j.strusafe.2008.06.020
https://doi.org/10.1016/j.strusafe.2008.06.020
https://doi.org/10.1145/2000259.2000267
https://doi.org/10.1145/2000259.2000267
https://doi.org/10.1080/10447318.2018.1455307
https://doi.org/10.1080/10447318.2018.1455307
https://doi.org/10.1080/10447318.2018.1455307
https://doi.org/10.1080/10447318.2018.1455307
https://doi.org/10.1145/2489850.2489859
https://doi.org/10.1145/2489850.2489859
https://doi.org/10.1145/2489850.2489859
https://doi.org/10.1145/2489850.2489859

22 S. Hahner et al.

26. Mahdavi-Hezavehi, S., et al.: A Classification Framework of Uncertainty in
Architecture-Based Self-Adaptive Systems with Multiple Quality Requirements.
Managing Trade-Offs in Adaptable Software Architectures p. 33 (2017). https:
//doi.org/10.1016/B978-0-12-802855-1.00003-4

27. Mahdavi-Hezavehi, S., et al.: Uncertainty in Self-Adaptive Systems: A Research
Community Perspective. ACM TAAS (2021)

28. McConnell, S.: Software project survival guide. Microsoft Press, Redmond, Wash.
(1998)

29. OWASP Foundation: Owasp top 10:2021 (2021), https://owasp.org/Top10/, ac-
cessed 05/11/2022

30. Perez-Palacin, D., Mirandola, R.: Dealing with uncertainties in the performance
modelling of software systems. In: QoSA. pp. 33–42. ACM (2014). https://doi.org/
10.1145/2602576.2602582

31. Perez-Palacin, D., Mirandola, R.: Uncertainties in the modeling of self-adaptive sys-
tems. In: ICPE. pp. 3–14. ACM (2014). https://doi.org/10.1145/2568088.2568095

32. Ramirez, A.J., et al.: A taxonomy of uncertainty for dynamically adaptive systems.
In: SEAMS. pp. 99–108 (2012). https://doi.org/10.1109/SEAMS.2012.6224396

33. Reussner, R.H., other: Modeling and Simulating Software Architectures: The Pal-
ladio Approach. The MIT Press (2016)

34. Robert Koch Institute: Open-Source Project Corona-Warn-App (2020), https://
www.coronawarn.app/en/, accessed 05/11/2022

35. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical software engineering 14, 131 (2009). https:
//doi.org/10.1007/s10664-008-9102-8

36. Sasse, M.A., Flechais, I.: Usable security: Why do we need it? how do we get it?
O’Reilly (2005)

37. Seifermann, S., Heinrich, R., Reussner, R.: Data-driven software architecture for
analyzing confidentiality. In: ICSA. p. 1–10. IEEE (2019). https://doi.org/10.1109/
ICSA.2019.00009

38. Seifermann, S., Heinrich, R., Werle, D., Reussner, R.: A unified model to
detect information flow and access control violations in software architec-
tures:. In: SECRYPT. p. 26–37. SCITEPRESS (2021). https://doi.org/10.5220/
0010515300260037

39. Seifermann, S., et al.: Detecting violations of access control and information
flow policies in data flow diagrams. JSS (2022). https://doi.org/10.1016/j.jss.2021.
111138

40. Shostack, A.: Threat Modeling: Designing for Security. John Wiley & Sons (2014)
41. Troya, J., et al.: Uncertainty representation in software models: a survey. Software

and Systems Modeling (2021). https://doi.org/10.1007/s10270-020-00842-1
42. Tuma, K., et al.: Flaws in Flows. In: ICSA. pp. 191–200. IEEE (2019). https:

//doi.org/10.1109/ICSA.2019.00028
43. Walker, W.E., et al.: Defining uncertainty: a conceptual basis for uncertainty man-

agement in model-based decision support. Integrated assessment 4(1), 5–17 (2003).
https://doi.org/10.1076/iaij.4.1.5.16466

44. Walter, M., et al.: Architectural optimization for confidentiality under structural
uncertainty. In: ECSA’21 Post-Proceedings. Springer (2022), accepted, to appear

45. Weisbaum, H.: Trust in facebook has dropped by 66 percent since the cam-
bridge analytica scandal (2018), https://www.nbcnews.com/business/consumer/
trust-facebook-has-dropped-51-percent-cambridge-analytica-scandal-n867011, ac-
cessed 05/11/2022

https://doi.org/10.1016/B978-0-12-802855-1.00003-4
https://doi.org/10.1016/B978-0-12-802855-1.00003-4
https://doi.org/10.1016/B978-0-12-802855-1.00003-4
https://doi.org/10.1016/B978-0-12-802855-1.00003-4
https://owasp.org/Top10/
https://doi.org/10.1145/2602576.2602582
https://doi.org/10.1145/2602576.2602582
https://doi.org/10.1145/2602576.2602582
https://doi.org/10.1145/2602576.2602582
https://doi.org/10.1145/2568088.2568095
https://doi.org/10.1145/2568088.2568095
https://doi.org/10.1109/SEAMS.2012.6224396
https://doi.org/10.1109/SEAMS.2012.6224396
https://www.coronawarn.app/en/
https://www.coronawarn.app/en/
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1109/ICSA.2019.00009
https://doi.org/10.1109/ICSA.2019.00009
https://doi.org/10.1109/ICSA.2019.00009
https://doi.org/10.1109/ICSA.2019.00009
https://doi.org/10.5220/0010515300260037
https://doi.org/10.5220/0010515300260037
https://doi.org/10.5220/0010515300260037
https://doi.org/10.5220/0010515300260037
https://doi.org/10.1016/j.jss.2021.111138
https://doi.org/10.1016/j.jss.2021.111138
https://doi.org/10.1016/j.jss.2021.111138
https://doi.org/10.1016/j.jss.2021.111138
https://doi.org/10.1007/s10270-020-00842-1
https://doi.org/10.1007/s10270-020-00842-1
https://doi.org/10.1109/ICSA.2019.00028
https://doi.org/10.1109/ICSA.2019.00028
https://doi.org/10.1109/ICSA.2019.00028
https://doi.org/10.1109/ICSA.2019.00028
https://doi.org/10.1076/iaij.4.1.5.16466
https://doi.org/10.1076/iaij.4.1.5.16466
https://www.nbcnews.com/business/consumer/trust-facebook-has-dropped-51-percent-cambridge-analytica-scandal-n867011
https://www.nbcnews.com/business/consumer/trust-facebook-has-dropped-51-percent-cambridge-analytica-scandal-n867011

