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Abstract—Today’s software systems are neither built nor oper-
ated in isolation and have to adapt to their environment. Uncer-
tainty in the software and its context is inherently unavoidable
and should be actively analyzed and managed already at design
time. This includes analyzing the impact of uncertainty on a
system’s quality properties, which quickly becomes critical, e.g.,
regarding confidentiality. When not handled comprehensively,
confidentiality violations can occur due to uncertainty that void
previous analysis results. There exist many approaches to classify
and handle uncertainty. However, without locating the impact of
uncertainty, precise mitigation is often impossible. In this paper,
we present an uncertainty impact analysis that shows potential
confidentiality violations induced by different uncertainty types
like structural, behavioral, or environmental uncertainty. This
is achieved by combining software-architectural and data flow-
based propagation of uncertainty. Our tool-supported approach is
a first step towards predicting the impact of uncertainty without
laborious modeling and testing of what-if scenarios. The case
study-based evaluation shows that our impact analysis accurately
predicts confidentiality violations with a high F1-score of 0.94
while reducing the effort of manual analysis by 82%.

Index Terms—Software Architecture, Data Flow Analysis,
Uncertainty, Uncertainty Management, Privacy, Confidentiality

I. INTRODUCTION

Uncertainty has become a significant concern in the field of
software engineering [14], particularly regarding its impact
on a software’s quality properties. This can quickly become
critical, e.g., regarding privacy and security-related properties
like confidentiality. Confidentiality demands that “information
is not made available or disclosed to unauthorized individuals,
entities, or processes” [26]. Confidentiality violations can have
legal consequences [25] and harm user acceptance [49]. For
proactive decision-making as implied by Privacy by Design
[39] and adaptation to a changing environment, uncertainty
should be analyzed and managed as early as possible.

Much is yet unknown about potential uncertainty sources
and their effects [17], e.g., in early design due to abstract
requirements and open decisions [30], or in systems of systems
because of unpredictable behavior and complex dependencies
and interactions [31]. Here, uncertainty in a software system
(e.g., protocol choices) or its environment (e.g., sensor input)
can void assumptions [1]. Design time analyses enable archi-
tects to identify potential confidentiality violations early [43]
based on ensuring confidentiality requirements [20]. However,
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they are limited in modeling and analyzing uncertainty [5],
[47]. Also, uncertainty is often discussed by its source rather
than by its impact [19] which impedes its precise mitigation.
Hezavehi et al. [24] recently found a “lack of systematic
approaches for managing uncertainty” [24]. Acosta et al. [1]
also propose a propagation step of uncertainty sources to their
impact locations prior to mitigation. Although confidentiality
analyses exist that take the impact of uncertainty into account
[21], the connection to uncertainty sources is still missing. This
also becomes visible in a recent study by Troya et al. [46].
In this paper, we present a tool-supported approach for
Uncertainty Impact Analysis regarding confidentiality. Based
on software-architectural modeling, we propagate uncertainty
sources through the software system to identify impact lo-
cations that subsequently can be analyzed and mitigated
accordingly. This approach fills the gap between identifying
uncertainty sources and understanding their actual impact on
a system’s confidentiality by using the information of the
software’s architecture. To achieve this, we build upon the
concept of architecture-based change impact analysis [22].
Such analyses trace changes (e.g., replacing components or al-
tering interfaces) and predict the impact on the overall software
system. To analyze the impact of uncertainty on confidentiality,
we combine this structural propagation with the propagation
along extracted data flows. This enhances the precision of
the impact especially regarding confidentiality as “problems
tend to follow the data flow, not the control flow” [44].
By calculating the impact of uncertainty, software architects
can quickly identify confidentiality issues already at design
time without laborious modeling and analysis of architectural
variations [21] or what-if scenarios. Our contributions are:

C1 A modeling approach of software-architectural uncer-
tainty and its impact on data flow diagrams to analyze
confidentiality, presented in Section II.

C2 An uncertainty impact analysis that propagates uncer-
tainty based on five distinct propagation algorithms and
yields uncertainty impact sets, presented in Section III.

Our evaluation in Section IV is based on a real-world case
study using the open-source contact tracing app Corona Warn
App [35]. The results indicate high accuracy of the calculated
impact sets and also reduced manual effort. Section V dis-
cusses related work and Section VI concludes this paper.
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Figure 1. Component and data flow diagram of the running example

II. ARCHITECTURAL MODELING OF UNCERTAINTY

In this section, we discuss how to represent uncertainty
sources and their impact on confidentiality. We focus on
software-architectural uncertainty that can be represented and
analyzed early in architectural abstraction [19]. For better
understanding, we start with a running example that stresses
the distinction between an uncertainty’s source and its impact.

Figure 1 shows two diagrams of a simplified Online Shop
[16] under uncertainty (Ul and U2). The upper diagram
shows a component diagram that represents one view of the
software-architectural abstraction. It consists of an Online
Shop component that is accessed by users and a Database
Service. The lower diagram shows the extracted data flows
[42] that represent the system’s behavior from the viewpoint
of the data [10]. Both diagrams are annotated with question
marks that represent uncertainty sources, e.g., whether the
input validation works as intended (U1) or which Database
Service is in use (U2). Here, we see the difference between an
uncertainty’s source and its impact on confidentiality: If the
input validation fails (Ul), e.g., by forwarding confidential
user details, the impact might become visible as late as the
data flows to the Database. The locations of an uncertainty’s
source and its impact differ. Only considering the uncertainty’s
source location might thus hide the resulting problem.

Figure 2 summarizes this distinction between uncertainty
sources and impacts on the data flow. An Architecture Element
can be annotated with any number of Uncertainty Sources. Ev-
ery source can have zero or more Uncertainty Impact locations
within the software system. Regarding confidentiality, these
are best represented using Data Flow Diagram Elements [19].
Here, the impact starts at the affected element and follows the
data flow, as shown in the running example.
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Figure 2. Relation of software-architectural uncertainty and its impact

In previous work, we investigated the different types of uncer-
tainty that can affect confidentiality and defined a classification
[19]. This classification describes uncertainty properties like
location, manageability, or resolution time. Regarding confi-
dentiality, we distinguish five types of software-architectural
elements that can be affected by uncertainty: 1) Component
Uncertainty is assignable to components in use that represent
building blocks of a software system (e.g., Uncertainty U2).
2) Actor Uncertainty is assignable to actors in the system’s
environment like users, or hardware resources (e.g., unknown
runtime conditions or deployment options). 3) Behavior Un-
certainty is assignable to behavior descriptions like algorithms
or user input (e.g., Uncertainty U1). 4) Interface Uncertainty
is assignable to interfaces and their signatures that are used to
connect system parts, i.e., component types (e.g., an undefined
specification of transmitted data). 5) Connector Uncertainty
is assignable to wires between components in use. This
resembles interfaces but focuses on the communication rather
than the type definitions (e.g., the interception of two compo-
nents’ communication). Our previous work indicates that these
five types are sufficient to represent all sources of software-
architectural uncertainty with an impact on confidentiality. We
do not limit our modeling to a certain type of uncertainty, e.g.,
environmental uncertainty [5], or structural uncertainty [47].
While these types and their associated software-architectural
elements are sufficient to document uncertainty sources, ad-
ditional effort is required to also represent their impact. As
discussed, confidentiality is best investigated using data flow
diagrams [43]. We extend the unified modeling primitives of
data flow diagrams by Seifermann et al. [42], which are also
used in the running example and fit our uncertainty types.
Figure 3 shows our novel meta model that combines the
data flow modeling primitives (highlighted gray) and the five
uncertainty types. Nodes represent the system’s structure and
are affected by Component Uncertainty (e.g., Uncertainty U2
impacts the Database node). Flows connect these nodes by
transmitting data and are affected by Connector Uncertainty.
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Figure 3. Meta model of data flow diagrams with uncertainty annotations



Every node has a behavior that consists of one or multiple
Assignments of confidentiality-related labels, e.g., whether the
input is validated (U1). These assignments are affected by
Behavior Uncertainty. Nodes can also be described by Labels
to represent their properties (e.g., their deployment location)
and are affected by Actor Uncertainty. Last, Pins decouple
flows from a node’s behavior and function as interfaces that
are affected by Interface Uncertainty. The Behavior has no
associated uncertainty type because it only acts as a container
for pins and assignments. We intentionally only model known
uncertainty [19] and no quantitative information, e.g., the
likelihood of possible scenarios. This reduces the knowledge
required to make early predictions about uncertainty impacts.
In sum, this meta model enables us to connect the uncer-
tainty types from the software architecture to their correspond-
ing impact type. The representation as a data flow diagram
simplifies the subsequent task of uncertainty propagation.

III. UNCERTAINTY IMPACT ANALYSIS

In this section, we exploit the previously presented modeling
approach for analyzing the impact of uncertainty on confiden-
tiality. We start with an illustrative description of the mapping
and the propagation based on the running example. Afterward,
we provide a mathematical description of the impact analysis
and discuss the propagation algorithms in more detail.

Put simply, a data flow diagram consists of many connected
nodes that represent the system’s data processing. By mapping
an uncertainty source from the architectural element to its
counterparts in the data flow diagram, we can pinpoint the
original impact locations. By following all outgoing data
flows from these locations, we assess the set of all possible
locations of confidentiality violations. In the running example,
Uncertainty Ul is annotated to the behavior of the Online Shop
component and mapped to the validate node. Following all
outgoing data flows, failure of the input validation can lead
to violations in the validate, store, or Database node, e.g., by
forwarding unfiltered user details. There is no propagation on
the data flow iff the impact location already represents a data
sink, e.g., the Database that is impacted by Uncertainty U2.

A. Formal Foundation of the Impact Analysis

A data flow diagram without cycles can be represented as
a Directed Acyclic Graph (DAG) G = (V, E) consisting of
vertices V' and edges E [9]. These represent nodes and data
flows, respectively. Two vertices u,v € V are strictly partially
ordered u < v iff there exists a directed path from u to v, i.e.,
a (transitive) data flow. An induced subgraph G[X] consists
of a subset of vertices X C V and their outgoing edges. In
our running example, there exists a data flow from validate to
store, thus validate < store. The data flow beginning from
validate represents an induced subgraph of the full DAG.

To describe our analysis, we define, similar to Figure 2: Let
A ={ay,...,a,} be the set of all architectural elements like
components and interfaces. Let S = {s1,...,s,} be the set
of all uncertainty sources and I = {i1,...,4,} the set of all
uncertainty impacts. We name the annotation of an uncertainty

source to an architectural element a : S — A, e.g., a(UI) =
OnlineShop. We reuse the mapping [41] from an architectural
element to its corresponding vertices of the data flow diagram
asm:A—V,eg, m(OnlineShop) = validate.

The uncertainty impact analysis can be defined as function
u: S — X CV, where S represents all uncertainty sources.
X induces a subgraph G[X] of the data flow diagram, i.e., the
part of the software system that is affected by the annotated
uncertainty sources. The analysis consists of three steps: First,
we propagate the uncertainty based on the structure of the
software architecture by adapting the propagation rules defined
by change impact analysis [36]. For example, altering an
interface does affect both its caller and the callee. We define
the structural propagation as p4 : A — A. Second, we apply
the previously defined mapping m : A — V from all affected
architectural elements to their corresponding vertices of the
data flow diagram. Third, we define the propagation along the
data flow as pp : V. — X C V. The previously mapped
vertices represent the first affected nodes in the direction of
the data flow, so that Vx € X C V,3a € A : m(a) =< z. The
induced subgraph G[X] represents the full impact set including
transitive effects. In sum, we define u = pp omopy o a.

In the running example, the annotated uncertainty sources
Ul and U2 affect the validate and Database vertices after
the structural propagation p4 and the mapping m. After
following the data flow with pp, both are part of the induced
subgraph G[X] with {validate, store, Database} € X. In
other words, a potentially erroneous input validation (U1) or
an untrustworthy database service provider (U2) would cause
confidentiality violations in these parts of the system. Note
that this only represents a simplified scenario. Realistic data
flow diagrams can consist of several hundreds of nodes [10].

B. Uncertainty Impact Propagation Algorithms

We realized this analysis approach based on the Palladio
Component Model (PCM) [34] because of its widespread dis-
tribution and mature tool support. However, the realization is
possible with any similar Architectural Description Language
(ADL) or even a mixture of UML diagram types [40]. Our
prototypical implementation is available online [18] to address
the limitation of unavailable tooling of current research in this
field [46]. To implement the propagation of uncertainty sources
to their impact locations, we define propagation algorithms
for each of the five uncertainty types discussed with Figure 3.
In the following, we focus on the propagation of Interface
Uncertainty that demonstrates the analysis comprehensively.
The other algorithms are only described briefly due to space
restrictions, but they are all implemented in our data set [18].

Algorithm 1 describes Interface Uncertainty propagation.
Steps 2 — 4 represent the architecture-based propagation pa:
An uncertain interface has an impact on all components that
implement the interface and also on all components that use
such components. In the running example, an uncertain inter-
face between the Online Shop and Database Service would
affect both components. After identifying the PCM elements
that represent this behavior (a component’s StartActions and



Algorithm 1 Algorithm for Interface Uncertainty Propagation

Require: PCM software architecture model, corresponding data
flow diagram, annotated interface uncertainty source

[

:Find the interface annotated with interface uncertainty
2: Calculate the structural uncertainty propagation from the
interface to all implementing components

for all components providing an implementation of the interface
do
for all method signatures of the interface do
Find the start of the component’s method implementation
Add the StartAction to the list of impacts
end for
end for

3: Calculate the structural uncertainty propagation from the
interface to all calling components

for all components requiring an implementation of the interface
do
for all external calls of the component to other components do
if the external call conforms to the interface then
Add the ExternalCallAction to the list of impacts
end if
end for
end for

4: Calculate the structural uncertainty propagation from the
interface to the system usage (similar to step 3)

5: Map all impacts to their corresponding data flow nodes

6: Calculate the uncertainty propagation along the data flows

for all mapped data flow diagram nodes do
while the data flow diagram node is no file or data sink do
Collect all successors of the node in the flow direction
end while
end for

7: Calculate the impact set by finding the maximum discontiguous
data flows, i.e., data flows not contained in each other

for all collected data flows do
if a collected data flow represents a subgraph of this flow then
Remove the subgraph from the collection of data flows
end if
end for

ExternalCallActions), we map them to the extracted data flows
[41]. Afterward, we propagate the uncertainty again along the
data flows in Step 6 and combine the identified data flows in
Step 7. This realizes the data flow-based propagation pp and
the construction of the induced subgraph G[X].

Connector Uncertainty is similar to Interface Uncertainty
but the uncertainty is propagated only for the annotated con-
nection and not for all components that implement an interface.
The propagation of the other uncertainty types consists of
fewer steps because they already represent nodes rather than
edges in the data flow diagram. Behavior Uncertainty is prop-
agated to the corresponding data flow nodes, e.g., Uncertainty
Ul is propagated to the validate node. Component Uncertainty
is propagated to the first nodes of all incoming data flows on
the annotated component, e.g., Uncertainty U2 is propagated
to the Database node. Last, Actor Uncertainty is propagated
to all nodes that describe the behavior of the actor, e.g., the
input node describes the behavior of the user of the Online
Shop. Steps 5 — 7 are similar for all uncertainty types.

In sum, this analysis enables us to propagate uncertainty in the
software architectural model and along extracted data flows.
The automated analysis yields an uncertainty impact set that
predicts potential confidentiality violations.

IV. CASE STUDY-BASED EVALUATION

Our analysis predicts the impact of uncertainty on a software
system’s confidentiality by propagating uncertainty sources
through the software architecture and along the data flows.
Our goal is to minimize the overestimation of the potential
uncertainty impacts while reducing the effort of both the
modeling and the analysis. We validate the accuracy and effort
reduction based on a real-world case study using the Corona
Warn App [35]. In the following, we present our evaluation
plan, design, and results and also discuss threats to validity.

A. Evaluation Goal, Questions, and Metrics

We use a Goal Question Metric plan [2] to evaluate the
impact analysis. To enhance validity, this plan is close to
the evaluation of architecture-based change impact analysis
[36]. Our Goal is to evaluate the quality of the calculated
impact set compared to manual confidentiality analysis. We
use the common terminology [36] and call the affected set,
the set of elements that are affected by uncertainty and would
violate confidentiality in a manual confidentiality analysis. We
consider the affected set to be the ideal result. Our automated
analysis yields an impact set, i.e., the set of elements that are
potentially affected. Here, the goal is that both sets are as close
as possible with minimal overestimation [4]. To evaluate this
goal, we ask the following questions:

Q1 How precise and complete is the calculated impact set
compared to manual analysis?

Q2 Is there an effort reduction regarding the number of data
flow diagram elements that software architects have to
consider compared to manual analysis?

Question Q1 evaluates the accuracy of our analysis [33]. An
element of the impact set represents a true positive (TP) if it
violates confidentiality and is thus also in the affected set. If
the element is only in the impact set, it is a false positive (FP).
If an element of the affected set is not found by our analysis,
it represents a false negative (FN). We measure precision P =
TP{_% (M1.1), recall R = TP:Z_% (M1.2), and the F score,
i.e., their harmonic mean, F; = 2 X iig (M1.3). For all
metrics, 0 represents the worst, and / is the best possible value.

Question Q2 evaluates the effort reduction [36]. We evaluate
how many elements of the data flow diagram have to be con-
sidered by software architects while analyzing confidentiality.
This evaluation is based on the data flow to enable a fair
comparison to data flow-based confidentiality analysis [43].
We first consider the affected set that consists of correctly
identified and all potentially non-identified confidentiality-
violating elements of the data flow diagram. The ratio of the
affected set to all elements n is calculated as r, = W
(M2.1). The ratio of elements in the impact set, i.e., the
number of all identified elements, is calculated r; = %HFP
(M2.2). Here, lower values are better.




B. Evaluation Data and Design

Our evaluation is based on a real-world case study using the
Corona Warn App [35]. This represents a large enterprise
system of systems that has been commissioned by the German
government, developed by SAP and Deutsche Telekom during
the COVID-19 pandemic, and downloaded more than 48
million times [35]. The contact tracing app exchanges keys
between users via Bluetooth and handles highly sensitive data
like COVID-19 test results. All source code and compre-
hensive design documentation are open-source and publicly
available on GitHub [38]. Due to the strict confidentiality
requirements and the rapid development in an uncertain en-
vironment, we consider this to be a suitable case study.

Based on the available documentation [38], we modeled the
software architecture using Palladio [34]. Our model consists
of 19 components, e.g., for processing and storing test results
and exchanged keys, or user registration and authentication.
We also modeled different deployment locations, usage sce-
narios, and the behavior of the essential functionality. The
extracted data flows [42] consist of a total of 200 nodes. To
evaluate all five uncertainty types, we define 4 uncertainty
scenarios based on previous studies [3], [19]. Scenario S1
collects uncertainty sources in one single component, e.g.,
the processing of confidential data. Scenario S2 consists of
environmental uncertainty, e.g., the deployment of servers.
Scenario S3 focuses on behavioral uncertainty, e.g., concerning
the correct validation of user input. Scenario S4 considers
critical points in the system with a wide impact, e.g., due to a
bug in the database. All models and details about the scenarios
can be found in our data set [18].

We use our automated analysis to calculate the individual
impact sets for all scenarios. These sets consist of data flow
diagram elements that were identified based on the uncertainty
propagation algorithms described in Section III. Afterward, we
alter the modeled system to violate confidentiality for each
annotated uncertainty source, e.g., by adding a bug in the
validation of the user input or changing the server deployment
locations. This represents the manual confidentiality analysis
of what-if scenarios [40]. Manually modeling and analyzing
confidentiality due to uncertainty requires more effort [21] but
only yields actual violations, i.e., the affected set.

We count elements as true positive (TP) if they are contained
in both sets and represent correctly identified confidentiality
violations. Elements of the impact set that do not violate
confidentiality and thus overestimate the affected set are
counted as false positive (FP). Each identified element of the
impact set is either a true positive or a false positive. Data flow
diagram elements that neither violate confidentiality nor have
been identified by our analysis are classified as true negative
(TN). Elements of the affected set that were not identified by
our analysis are counted as false negative (FN).

C. Evaluation Results and Discussion

Table I shows the results of the evaluation. In all 4 scenarios,
every confidentiality violation was predicted by the impact
analysis, as expected. Thus, the affected set is always a subset

Table 1
EVALUATION RESULTS FOR ALL 4 UNCERTAINTY SCENARIOS

S1 S2 S3 S4 Average
Precision P 0.838 1.000 0.840 0.882 0.890
Recall R 1.000 1.000 1.000 1.000 1.000
Fy score 0.912 1.000 0.913 0.938 0.942
Ratio rq 0.155 0.080 0.105 0.300 0.160
Ratio r; 0.185 0.080 0.125 0.340 0.183

of the impact set which results in the optimal recall R of 1.0.
This also implies that the ratio of the affected set r, is a lower
limit to the impact set ratio, i.e., 7, < 1; < 1.

In Scenario S1, the uncertainty focuses on one single com-
ponent and is primarily propagated in the data flow diagram
rather than the architectural model. Because the confidentiality
violation happens near to the data sink, the overestimation
results in an F} score of 0.9/. The number of elements that
would have been inspected is highly reduced with an impact
set ratio r; of 0.19. In Scenario S2, the uncertainty is located
in the environment of the software system. The confidentiality
violations are also located in the data flow diagram nodes that
represent the environment, e.g., in data sinks that represent
databases. Thus, this scenario results in the optimal F} score
of 1.0 and equal ratios r, = 7;, because the impact set is equal
to the affected set. Scenario S3 focuses on uncertainty in the
behavior of different parts of the system. Here, the uncertain
validation of exchanged keys leads to confidentiality violations
while inserting them into the database. This scenario yields
an F} score of 0.91 and again highly reduces the required
effort with r; = 0.13. The last Scenario S4 contains only
wide-spreading uncertainty sources in central components like
the main server database component. Although this results
in a precision of 0.89, still, all confidentiality violations are
correctly predicted, and the required effort is reduced with an
impact set ratio r; of 0.34. Despite the lacking precision, the
analysis could still correctly exclude uncertainty impacts in 7
of the 14 extracted data flows, e.g., there is no impact on the
test result servers if the application server fails.

Overall, the evaluation shows satisfying results. With a
recall R of 1.0, all confidentiality violations were correctly pre-
dicted without any false negatives. With an average precision
of 0.89, there is some overestimation which is common among
impact analyses [3], [23], [36]. Here, we want to highlight
the importance of optimizing for high recall (fewer false
negatives) rather than high precision (fewer false positives).
Impact analyses, like change impact analysis, are used to
make early predictions of the possible outcomes of external
influences. Especially regarding security-related properties like
confidentiality, missing violating elements could have severe
results. Thus, a certain degree of imprecision is acceptable as
long as no relevant impact is overlooked, and the impact set is
significantly smaller than the full system under study. In our
evaluation results, this is the case as the number of elements
that software architects have to consider is significantly re-
duced by 82% to a ratio r; of 0.1/83 which is near the optimal



value of r, = 0.160. Besides the number of elements, our
impact analysis also reduces the modeling effort. To identify
the confidentiality violations of the affected set, software
architects have to additionally define data characteristics and
data flow constraints [20]. Also, they must model possible
effects of the uncertainty sources, e.g., by altering the system
behavior or component wiring. With our approach, an element
of the software architecture only has to be annotated with
an uncertainty source without the need to define any what-if
scenarios. The calculation of the impact set is fully automated.

D. Threats to Validity

We discuss threats to validity based on the guidelines by
Runeson and Host [37]. Regarding internal validity, a threat
of model-based analyses is accurate modeling. Also, the
modeled confidentiality violations can negatively impact the
analysis results. To mitigate these issues, we used a case with
comprehensive documentation of the software architecture
that was already independently modeled in other work [3].
The external validity of our case study is limited by the
system under consideration and by the comprehensiveness of
uncertainty annotations. To that end, we built upon a domain-
independent and already evaluated set of uncertainty types
[19]. To maximize construct validity, we used a Goal Question
Metric plan [2] that is closely oriented on the evaluation of
change impact analysis [36]. Konersmann et al. [27] state a
lack of replication packages and available tool-support. To
address this and to increase reliability, we published a data
set containing all evaluation data [18].

V. RELATED WORK

We divide related work in three categories: Architecture-
based uncertainty analysis, uncertainty-aware confidentiality
analysis, and uncertainty propagation for self-adaptation.
Architecture-based uncertainty analysis: Research on un-
certainty in software architecture uses modeling techniques
to represent and analyze quality properties under uncertainty.
Troya et al. [46] give an overview of the modeling of uncer-
tainty, and Sobhy et al. [45] on evaluating software architecture
while facing uncertainty. There are many approaches dealing
with uncertainty in software architectures, e.g., by using fuzzy
values [12], [29] or evolutionary optimization for design space
exploration [28]. Such approaches can consider a wide range
of quality properties such as performance, costs, or reliability.
However, the coarse-grained modeling and analysis of con-
fidentiality lacks in precise statements about confidentiality
violations that help in identifying problems in the architecture.
Uncertainty-aware confidentiality analysis:  To over-
come this limitation of general-purpose architecture analysis,
uncertainty-aware confidentiality analysis has been proposed.
Walter et al. [47] extend PerOpteryx [28] with a data flow-
based confidentiality analysis [43] to reason about structural
uncertainty. Boltz et al. [5] reuse the same confidentiality
analysis [43] to consider environmental uncertainty. In recent
work, we used variability models to express uncertainty and
analyze its impact on confidentiality [21]. However, all of these

approaches require software architects to explicitly model the
uncertainty impacts and do not consider their sources. As
discussed, this requires more experience and effort and is also
error-prone if the system or its environment changes.

Uncertainty propagation for self-adaptation: The propa-
gation of uncertainty has also been proposed for designing
models of cyber-physical systems [1]. Also at runtime, prop-
agation can be used for monitoring and impact assessment as
part of the MAPE-K loop [24]. The uncertainty types used
for our meta model are also related to the modeling of self-
adaptive systems [32]. A number of publications consider
related uncertainty sources [13] and their management [6],
[7], also at design time [50]. When considering multiple
uncertainties to propagate, this is also related to the recently
proposed uncertainty interaction problem [8]. We see much
potential in integrating our propagation concept for a more
precise uncertainty assessment by tracing the impacts of
uncertainty on confidentiality. This is especially true for anti-
fragile systems [15] that improve through uncertainty.

VI. CONCLUSION

In this paper, we presented an approach for modeling and
analyzing the impact of uncertainty on confidentiality. Our
meta model relates data flow diagram elements to different
uncertainty types. The impact analysis propagates annotated
uncertainty sources both in the software architectural model
and in the data flow diagram. Our evaluation indicates that
the calculated impact sets accurately predict potential confi-
dentiality violations while reducing the required effort.

Propagating uncertainty helps software architects in han-
dling uncertainty [1]. Architecture models can be annotated
with uncertainty sources from existing collections [19] which
helps in the documentation and to raise awareness. The analy-
sis helps in predicting and mitigating confidentiality violations.
Using a confidentiality analysis for this purpose would require
software architects to understand and model the impact of
uncertainty manually which requires more effort and expertise.
The calculated models of our analysis can also be used for
regression testing or to handle uncertainty at runtime [11].

In future work, we want to enhance both our modeling
and analysis. By extending the expressiveness of our model
and combining it with variability modeling [48], the precision
of the predicted confidentiality violations shall be improved.
Also, refined or extended propagation algorithms are imagin-
able. Last, we plan for additional evaluation domains, e.g.,
regarding cyber-physical systems or in the context of the
increasingly connected mobility domain.
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