
How Students Plagiarize Modeling Assignments
Timur Sağlam , Larissa Schmid , Sebastian Hahner , Erik Burger

KASTEL – Institute of Information Security and Dependability, Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

firstname.lastname@kit.edu

Abstract—Plagiarism is a prevalent issue in computer science
education, with students employing various techniques to conceal
their plagiarism. While it is essential to understand how students
engage in plagiaristic behaviors, it remains unclear how students
do so for modeling assignments. To close this gap, we conducted
an experiment involving novice modelers, instructing them to
plagiarize a modeling assignment while concealing its source.
Thus, this paper explores students’ specific techniques to conceal
modeling plagiarism. Our work initiates a discussion on plagiarism
in modeling assignments and sheds light on the challenges
associated with detecting and addressing it.

Index Terms—Plagiarism Detection, Modeling Plagiarism,
Plagiarism Obfuscation, Modeling Assignments, MDE Education

I. INTRODUCTION

Plagiarism is a significant concern in educational settings,
especially in today’s computer science education, as digital de-
liverables can be easily copied and altered [1, 2, 3]. Plagiarism
is particularly prevalent when assignments are mandatory, for
instance, in introductory-level courses [4]. Students demonstrate
creativity in concealing plagiarism, particularly regarding
digital deliverables such as source code or models. They
employ obfuscation techniques such as renaming, reordering, or
restructuring to make the plagiarism less recognizable and more
challenging to detect [5, 6]. Despite preventive measures and
educational interventions, plagiarism in assignments persists.
To make matters worse, online resources, e.g. repositories of
solved exercises, further simplify plagiarism [7]. To better
recognize and prevent plagiarism, it is essential to understand
how students approach and engage in plagiaristic behaviors.

Regarding programming assignments, the forms of plagia-
rism are well researched [5]. This includes classifications of
code obfuscation techniques [8, 6] and the automated detection
of plagiarism in student submissions [9]. However, only limited
research exists on plagiarism in modeling assignments. Fur-
thermore, modeling assignments are susceptible to plagiarism
since they are complex and require domain understanding and
problem-solving skills [7]. Yet, these assignments are often the
only way to evaluate the student’s performance [10]. While pla-
giarism detection for modeling assignments has been proposed
recently [7, 11], it remains unclear how students engage in
plagiaristic behaviors in modeling assignments. Related work
from the domain of modeling clone detection [12] does not
address this issue: Plagiarism detection involves an attacker

This work is based on the project SofDCar (19S21002), which the German Federal
Ministry for Economic Affairs and Climate Action funds. It is also supported by the
Ministry of Science, Research and the Arts Baden-Württemberg (Az: 7712.14-0821-2),
by ”Kerninformatik am KIT” funded by the Helmholtz Association (HGF), and the topic
Engineering Secure Systems of the HGF and by KASTEL Security Research Labs.

scenario, where the plagiarizer intentionally tries to conceal
the plagiarism by employing various obfuscation techniques.
In contrast, clone detection focuses on identifying identical
or similar sections in models without considering deliberate
obfuscation by plagiarizers. Therefore, the approaches and
techniques developed for modeling clone detection cannot be
directly applied to the context of modeling plagiarism. In
essence, the lack of knowledge about students’ plagiaristic
behaviors hinders detection efforts.

This paper addresses this issue by systematically analyzing
how students plagiarize and obfuscate in modeling assignments.
We present the results of an experiment where ten novice
modelers were asked to plagiarize a given metamodeling as-
signment’s solution and conceal their plagiarism, i.e., hiding the
relation to the original. We employed a mixed-method approach,
combining quantitative analysis of the plagiarized metamodels
and qualitative data from the participants’ descriptions of how
they tried to conceal the plagiarism. We show how frequently
different techniques were employed and to what level the
models were altered. In the experiment’s result evaluation,
we asked the course instructors to inspect both plagiarized
and original solutions. Additionally, we applied a state-of-the-
art plagiarism detector [11] to test the automatic plagiarism
detection quality. In sum, we address and contribute to the
following research questions:

RQ1: How do students conceal modeling plagiarism?
RQ2: Can modeling plagiarism be detected by the instructors?
RQ3: Can modeling plagiarism be detected automatically?

The experiment shows how the ten participants engage in
modeling plagiarism and how they described their approach
(RQ1). We also report on our findings from both the manual
inspection (RQ2) and the automated analysis (RQ3). We
publish all pertinent data in the supplementary material. The
results show that the participants employ various obfuscation
techniques, with the renaming of elements occurring most
frequently, followed by re-ordering elements. On average,
students alter every second element of the modeling assign-
ment. Nevertheless, human and tool-based inspection can still
detect these plagiarism instances. However, manual inspection
quickly becomes impractical with large course sizes. This
paper contributes to a better understanding of plagiarism in
modeling assignments by investigating students’ obfuscation
techniques. Ultimately, we provide insights to enhance fairness
and academic integrity in assessing modeling assignments.

T. Sağlam, L. Schmid, S. Hahner, and E. Burger, “How Students Plagiarize Modeling Assignments,” in 2023 ACM/IEEE International Conference on 
Model Driven Engineering Languages and Systems Companion (MODELS-C), ACM/IEEE, 2023, doi: 10.1109/MODELS-C59198.2023.00032

https://orcid.org/0000-0001-5983-4032
https://orcid.org/0000-0002-3600-6899
https://orcid.org/0000-0003-3450-0508
https://orcid.org/0000-0003-2832-3349
mailto:timur.saglam@kit.edu


Table I: Obfuscation techniques employed by the participants, classified according to Babur et al. [12]. We include how often
each technique occurred across all participants (denoted as #Occ) and how many participants employed it (denoted as #Part).

Techniques Description #Occ. #Part. Type

Cosmetic Renaming Changing capitalization of names, introducing or resolving typos. 1 1 A
Minor Renaming Introducing or resolving abbreviations, adding and removing suffixes or prefixes. 85 9 B
Major Renaming Changing names to synonyms, translations, or entirely different names. 141 7 C

Re-Order Features Re-ordering attributes and references of a classifier. 10 1 B
Re-Order Package Re-ordering the elements contained within a single package. 57 4 B
Re-Order Classifiers Moving classifiers from one package to another (re-ordering across the model). 1 1 C

Introduce Package Create a package and add existing elements from other packages or other packages. 20 3 C
Dissolve Package Deleting a package and moving its contained elements to other packages. 8 4 C

Delete Feature Delete an existing attribute, relation, or operation of a classifier. 26 7 B
Delete Classifier Delete an existing classifier from the model. 11 6 C
Delete Package Delete an existing package from the model (can be part of dissolving a package). 5 4 B

Insert Feature Insert a new attribute, relation, or operation into a classifier. 6 4 B
Insert Classifier Insert a new classifier into the model. 10 3 C
Insert Package Inserting a new package into the model (may be combined with moving elements). 5 4 B

Change Property Changing an element’s property, e.g., abstract for classifiers, ordered or the cardinality for references. 31 3 B

Remove Inheritance Remove inheritance relation between the two classifiers. 4 1 C
Add Inheritance Add inheritance relation between the two classifiers. 7 2 C
Change Inheritance Changing the inheritance hierarchy structurally without changing it semantically. 9 2 D

II. EXPERIMENT DESIGN
We conducted an experiment with novice modelers, where they
plagiarized an EMF [13] metamodel and obfuscated the relation
to the original metamodel. In total, ten students voluntarily
participated in the experiment. The experiment consisted of two
tasks conducted sequentially. First, the participants were asked
to copy and modify a given source metamodel to conceal the
plagiarism while still fulfilling the given assignment. Second,
we asked the participants for a brief description outlining their
techniques to disguise the act of plagiarism and its relation to
the original solution. The duration of the experiment was 30
minutes. Since participants used their own solutions as a basis
for plagiarism, they did not require additional familiarization. 1)
Scenario: We instructed the participants to imagine a scenario
where a deadline for a modeling assignment was coming
up. However, they had access to a solution provided by a
hypothetical classmate and thus decided to plagiarize it. To that
end, the participants were asked to conceal the plagiarism from
the instructor of the hypothetical course while still fulfilling the
assignment. 2) Participants: We conducted our experiment with
ten students from a practical course on model-driven software
development. It is a master’s level computer science elective
course at Karlsruhe Institute of Technology, Germany. The
students are novice practitioners of model-driven engineering
and had little to no prior metamodeling experience before
attending the course. The course covers typical [10] topics like
(meta)modeling and model transformations. 3) Metamodeling
Assignment: Our experiment uses a typical [10] modeling
assignment [14] of an MDE practical course, which tasks
the students with creating an EMF metamodel for designing
component-based system architectures. The metamodel includes
four different architectural views: The component repository,
the component assembly, the system’s hardware environment,
and the components’ allocation. Students usually solve this
modeling assignment in groups, ranging between two and five

students. In the past, students’ solutions for this assignment
contained, on average, 5 packages, 39 classifiers, 45 references,
10 attributes, and 1 operation [11]. 5 4) Ethical Considerations:
During this experiment, ethical considerations were given
due attention. Participants voluntarily partook and were fully
informed about the experiment’s scope and purpose. They
explicitly agreed to use and publish their artifacts for research
purposes, ensuring confidentiality by anonymizing them.

III. RESULTS
In this section, we present our findings [14], addressing RQ1
by analyzing participants’ obfuscation techniques, RQ2 by
examining human plagiarism detection effectiveness, and RQ3
by evaluating an automated tool’s detection performance.

A. Obfuscation Techniques
To analyze the obfuscation techniques employed by the students
(RQ1), we first used EMF Compare to identify potential
differences between the plagiarized models and their originals.
Unsurprisingly, in some cases, EMF Compare did not accurately
produce the correct differences [15], highlighting the limitation
of relying solely on model differencing for plagiarism detection.
In the second step, we thus manually inspected the models,
carefully examining them for potential obfuscation. To ensure
the validity of our observations, we cross-referenced our
findings with the textual descriptions provided by the students.
In our experiment, the participants engaged in a range of
individual alterations to obfuscate the plagiarism, with the
number of alterations varying between 10 and 91. Thereby we
count semantic alterations, e.g. moving an element is a single
one. The mean number of alterations is 43.7, while the median
is 31.5. These results imply an average of approximately one
alteration for every two model elements in the source model.

We classify the participant’s techniques according to the
modeling clone types from Babur et al. [12], based on the
UML clone types of [16]. While designed for clones rather than



plagiarism, this classification enables systematic categorization
of plagiarism techniques. Babur et al. [12] describe Type-
A clones as exact duplicates except for layout, formatting,
internal IDs, and purely cosmetic name changes. Type-B clones
have minor syntactic and semantic changes to names, types,
attributes, and minor additions or removals. Type-C clones
include more extensive alterations, additions, and removals
of elements and their properties. Finally, Type-D clones are
semantically equivalent with different structures and content.

We provide an overview of the techniques, indicating the
frequency of their application and the number of participants
who utilized each technique. As summarized in Table I, the
participants employed various obfuscation methods during the
experiment. The types of changes can be described as follows:
The most common method was renaming, accounting for about
half of the total changes made by all participants. Notably, the
participants tended to utilize sophisticated renaming strategies,
resulting in the majority of these alterations being categorized as
major renaming and none as cosmetic renaming. As an example
of such major renaming, one participant renamed a classifier
from ”Component” to ”BuildingBlock.” Other properties, such
as abstract or ordered, were also subject to changes, albeit
less frequently than names.

Another common practice observed was the reordering of
elements. However, most participants refrained from moving
classifiers across packages. Instead, they focused on rearranging
the contents of the packages themselves or altering the order
of features within the classifiers. Some participants also
introduced or dissolved packages, thus moving the contained
packages or classifiers. The insertion and deletion of elements
were far less common than expected. While in source code
assignments, the insertion of lines is one of the most prevalent
obfuscation techniques [5], our findings did not reflect this for
modeling assignments. Deleting elements, particularly features,
was observed slightly more frequently than insertions. Four
participants also modified the inheritance relations between
classifiers. Interestingly, two students went beyond simple
alterations and completely replaced the inheritance hierarchy
with a different one while ensuring that the underlying
semantics remained intact. This is the only technique we
classified as Type D (semantically equivalent, structurally
different). In summary, Table I shows that students employ
diverse obfuscation techniques with varying frequencies.
B. Human Detectability
To evaluate if humans can detect the participants’ plagiarism
instances (RQ2), we asked the course instructor to review eight
metamodels regarding their originality and whether they would
accept them as valid solutions. Due to time constraints, we
only used a subset of the metamodels. To include weaker and
stronger instances of plagiarism, we selected the plagiarism
instances based on the number of alterations made by the
plagiarizers. The subset for the review consists of four original
solutions. It also contains three plagiarism instances derived
from one solution and one instance from another.

For the review, we used the Think Aloud method, asking the
instructor to verbalize what they were thinking and doing. The

0%

25%

50%

75%

100%

Unrelated Pairs Plagiarism-to-Source Plagiarism-to-Plagiarism

S
im

il
ar

it
y

Figure 1: Similarities computed by JPlag for unrelated pairs,
plagiarisms with their sources, and plagiarisms of the same
source.

Type Med Mean Min Max Q1 Q3

Unrelated Pairs 14.79 15.52 0.00 51.15 10.08 20.78
Plag.-to-Source 89.27 84.71 47.06 95.31 86.35 91.58
Plag.-to-Plag. 77.46 72.55 42.65 92.79 64.52 85.36

Table II: Similarity metrics for the pair types in Figure 1, a
higher difference to the unrelated pairs means better detection.

instructor reviewed the models one after another, arranging
them side-by-side and first checking for their overall structure
and partition into packages. Within packages, they checked the
order of elements and the naming of the elements, focusing on
the data types that had to be modeled as part of the assignment.
They also inspected the OCL constraints contained for the
models that seemed similar. Within 20 minutes, they were
able to identify all plagiarism clusters correctly. One of the
plagiarized metamodels would not have been accepted as
a valid solution as it is a poor translation of the original,
resulting in nonsensical names. While the instructor identified
all plagiarism instances correctly in this experiment, they also
stated that this was possible only due to the small sample size.
For more metamodels, they would be unable to compare them
all manually side-by-side but would employ a tool.

C. Tool-based Detectability
To answer whether the plagiarized models can still be detected
with a state-of-the-art tool (RQ3), we employed the token-based
plagiarism detector JPlag [9, 11]. To create a comprehensive
labeled dataset, we combined the plagiarism instances from
ten participants, along with their corresponding sources, and
included unrelated solutions from previous years. This resulted
in a dataset of 31 solutions, which we analyzed using JPlag.
JPlag computes similarities for each assignment pair, resulting
in 465 pairs, which we depict in Figure 1. Detecting the
relationship between two instances of plagiarism from the same
source is significantly more challenging than the relationship
between a plagiarism instance and its source; as for the former
case, the alterations made by both plagiarizers accumulate,
leading to plagiarism up to twice as well obfuscated.

The plagiarism-to-plagiarism pairs exhibit considerably lower
similarities, with a median value of 77.5 percent, in contrast to
the 89.3 percent for the plagiarism-to-source pairs. Furthermore,



except for one outlier, all plagiarism-to-source pairs exhibit
higher similarity values than all plagiarism-to-plagiarism pairs.
This outlier is the plagiarism instance by one participant, who
achieves the reduced technique with two techniques. First, they
were thorough, making 91 individual changes to the source
model, corresponding to one change per model element. Second,
they heavily relied on re-ordering model elements, a weakness
of JPlag. Nonetheless, the similarity calculated by JPlag is
high enough to detect this outlier. Both groups, however, can
be clearly distinguished from the pairs of unrelated models,
which exhibit a significantly lower median similarity value of
14.8 percent. In summary, our findings show that modeling
plagiarism can be detected automatically.

IV. DISCUSSION

Lessons Learned: Our experiment revealed that despite the
various types of changes, most students predominantly utilized
renaming, deletion, and reordering as obfuscation techniques.
This highlights the limitations of relying on names for plagia-
rism detection. In modeling, names hold significant importance
compared to code, but they enable effortless obfuscation
attacks for plagiarism. Similarly, unique identifiers cannot be
solely relied on, as they can be manipulated, hindering the
identification of plagiarized elements. Detection tools should
be designed to minimize the impact of easily manipulable
characteristics of modeling artifacts. Students rarely utilized
type A changes, indicating their intention to refrain from
employing overt modifications. They also utilized very few type
D changes, which might be more common among experienced
modelers. We observed that the relation of two plagiarism
instances of the same original is significantly harder to detect
than the relations of the plagiarisms to the original. Although
modeling plagiarism can still be detected by humans or via
tools, it may become more challenging with increased time
spent obfuscating or with more experienced students. In our
experiment, the instructor often relied on model elements
overlooked during the participant’s obfuscation attempts, such
as OCL constraints. Furthermore, they also noted that manual
comparison would be impractical for larger sample sizes,
necessitating using a plagiarism detection tool. These findings
emphasize the need for continuous improvement of tool-based
detection methods.

Limitations: Our study was conducted in a simulated setting,
so we did not directly observe natural instances of plagiarism.
Thus, the effort by the students may be less pronounced
than in a real setting. Nonetheless, we maintain that these
conditions are adequate for observing how students plagiarize.
Furthermore, motivating students to participate in experiments
presents a challenge. To address this, we kept the duration of
the experiment relatively short. Nevertheless, the number of
participants could be higher, which could impact the gener-
alizability of our findings. For the experiment, we employed
a single modeling assignment. However, a broader sample,
including assignments of varying complexity, could potentially
expose further plagiarism strategies. Additionally, exploring
behavioral modeling languages like sequence diagrams would

be of interest. Despite this limitation, the experiment provides
valuable insights into the methods employed by students in
plagiarizing modeling assignments.

V. CONCLUSION

We examined how students engage in plagiaristic behaviors for
modeling assignments. By conducting an experiment with ten
novice modelers, we gained insights into the specific obfus-
cation techniques used. Our findings highlight the importance
of understanding modeling plagiarism, as its detection is a
significant challenge at scale. Our work contributes to the
ongoing discussion on academic integrity and provides valuable
insights to better recognize plagiarism. In future work, we aim
to explore automated obfuscation and plagiarism generation.

REFERENCES

[1] G. Cosma and M. Joy, “Towards a definition of source-code
plagiarism,” IEEE Transactions on Education, vol. 51, no. 2, pp.
195–200, May 2008.

[2] W. Murray, “Cheating in computer science,” Ubiquity, vol. 2010,
p. 2, 06 2010.

[3] T. Le, A. Carbone, J. Sheard, M. Schuhmacher, M. de Raath,
and C. Johnson, “Educating computer programming students
about plagiarism through use of a code similarity detection tool,”
in LaTiCE, Mar. 2013.

[4] C. Park, “In other (people’s) words: Plagiarism by university
students–literature and lessons,” Assessment & Evaluation in
Higher Education, vol. 28, no. 5, pp. 471–488, Oct. 2003.

[5] M. Novak, M. Joy, and D. Kermek, “Source-code similarity
detection and detection tools used in academia: A systematic
review,” ACM Transactions on Computing Education, vol. 19,
no. 3, pp. 1–37, Sep. 2019.

[6] O. Karnalim, “Detecting source code plagiarism on introductory
programming course assignments using a bytecode approach,”
in ICTS, 2016, pp. 63–68.

[7] S. Martı́nez, M. Wimmer, and J. Cabot, “Efficient plagiarism
detection for software modeling assignments,” CSE, vol. 30,
no. 2, pp. 187–215, Jan. 2020.

[8] J. Faidhi and S. Robinson, “An empirical approach for detecting
program similarity and plagiarism within a university program-
ming environment,” Computers & Education, vol. 11, no. 1, p.
11–19, Jan. 1987.

[9] L. Prechelt, G. Malpohl, M. Philippsen et al., “Finding plagia-
risms among a set of programs with jplag.” J.UCS, vol. 8, no. 11,
p. 1016, 2002.

[10] F. Ciccozzi, M. Famelis, G. Kappel, L. Lambers, S. Mosser,
R. F. Paige, A. Pierantonio, A. Rensink, R. Salay, G. Taentzer,
A. Vallecillo, and M. Wimmer, “How do we teach modelling and
model-driven engineering? a survey,” in MODELS Proceedings,
New York, NY, USA, Oct. 2018, p. 122–129.

[11] T. Sağlam, S. Hahner, J. W. Wittler, and T. Kühn, “Token-
based plagiarism detection for metamodels,” in MODELS-C
Proceedings, New York, NY, USA, 2022, p. 138–141.

[12] O. Babur, L. Cleophas, and M. van den Brand, “Metamodel
clone detection with SAMOS,” COLA, vol. 51, Apr. 2019.

[13] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF:
Eclipse Modeling Framework 2.0, 2nd ed., 2009.

[14] T. Sağlam, L. Schmid, S. Hahner, and E. Burger, “Supplementary
Material for How Students Plagiarize Modeling Assignments,”
Aug. 2023, https://doi.org/10.5281/zenodo.8281291.

[15] J. W. Wittler, T. Sağlam, and T. Kühn, “Evaluating model
differencing for the consistency preservation of state-based
views,” JOT, vol. 22, no. 2, pp. 2:1–14, July 2023, ECMFA’23.

[16] H. Störrle, Effective and Efficient Model Clone Detection, Cham,
2015, pp. 440–457.


	Introduction
	Experiment Design
	Results
	Obfuscation Techniques
	Human Detectability
	Tool-based Detectability

	Discussion
	Conclusion

