
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Architecture-Based and Uncertainty-
Aware Confidentiality Analysis

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik des

Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Sebastian Hahner

Tag der mündlichen Prüfung: 09. Dezember 2024

1. Referent: Prof. Dr. Ralf Reussner, Karlsruher Institut für Technologie (KIT)

2. Referent: Prof. Dr. Jesper Andersson, Linnaeus University (LNU)

This document is licensed under a Creative Commons

Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):

https://creativecommons.org/licenses/by-sa/4.0/deed.en

https://creativecommons.org/licenses/by-sa/4.0/deed.en

“Research is as much about ideas as about communicating them.”

— author unknown

Abstract

In this dissertation, we investigate architecture-based con�dentiality analysis under un-

certainty. We present a classi�cation of uncertainty regarding con�dentiality, a catalog of

uncertainty sources, an uncertainty impact analysis that propagates uncertainty to predict

its impact on the system’s con�dentiality, and uncertainty-aware con�dentiality analyses

that identify violations of con�dentiality requirements with respect to uncertainty.

In our interconnected world, an increasing amount of data is exchanged, processed and

stored every day. This enables a multitude of modern applications in many domains, from

mobility to healthcare, but it also presents signi�cant challenges. A particular challenge

is con�dentiality, which requires that information is not made available to unauthorized

individuals or organizations. The rise of cybercrime and the ubiquity of data breaches

underline the relevance of con�dentiality, as its loss can signi�cantly impact stakeholder

wealth and social acceptance. As demanded by approaches like privacy and security by

design, con�dentiality should be addressed and analyzed early in the development, e.g., on

the abstraction of the software’s architecture. Here, numerous architecture-based analysis

approaches have been proposed. Based on the assessment of architectural models, these

analyses can accurately and early identify violations of con�dentiality requirements.

However, today’s software systems are neither built nor operated in isolation and are

subject to uncertainty within the software system, its design, or its environment. Uncer-

tainty, often referred to as a lack of knowledge or information, is inherently unavoidable

in modern, interconnected software systems. When not handled comprehensively, con�-

dentiality violations can occur due to uncertainty that voids previous analysis results, e.g.,

because in�uences from the system context have not been adequately considered or users

and third parties behave di�erently than assumed. Addressing this problem requires new

approaches to identify and document uncertainty sources, as one cannot analyze what

one does not know. Software architects face challenges both in the inspection of software

architectures and in assessing con�dentiality under uncertainty.

Although architecture evaluation under uncertainty has been comprehensively researched,

existing approaches focus on other quality properties like performance, cost, or reliability

but do not consider con�dentiality. On the opposite, existing design time con�dentiality

analyses fall short of considering the impact of uncertainty on con�dentiality. Recent

surveys and road maps also �nd a lack of uncertainty management, accurate representation

of uncertainty sources, and uncertainty-aware end-to-end approaches.

In this dissertation, we address this lack of simultaneous consideration of uncertainty

and con�dentiality in architecture-based analysis. We present an approach to identifying,

i

Abstract

classifying, propagating, and analyzing uncertainty and its impact on a system’s con�den-

tiality using the architectural abstraction. First, we present a classi�cation of uncertainty

regarding con�dentiality that provides the terminology to understand and discuss the

relation between uncertainty and con�dentiality. We complement this classi�cation with

a catalog of uncertainty sources that simpli�es their identi�cation and addresses the

lack of awareness. Second, we introduce an architecture-based uncertainty impact anal-

ysis. By propagating uncertainty within the software architecture, software architects

can predict potential con�dentiality violations with minimal e�ort. Third, we present

uncertainty-aware con�dentiality analyses. These analyses consider uncertainty sources

as �rst-class entities in the software architecture and identify con�dentiality violations

due to uncertainty.

We validate our contributions using six evaluation scenarios and by conducting two user

studies. In addition to investigating the quality of our classi�cation, we evaluate the usabil-

ity of our catalog approach and the accuracy of all of our analyses. Furthermore, we inspect

the e�ort reduction of our uncertainty impact analysis and the scalability of the con�den-

tiality analyses under uncertainty. The results of the user studies indicate that combining

the classi�cation with our catalog of uncertainty sources helps to identify and describe

uncertainty sources. Afterward, the uncertainty impact analysis can accurately predict

the impact with an F1-score of 0.88 while greatly reducing the e�ort by 86% compared

to manual analysis. Last, uncertainty-aware con�dentiality analyses accurately identify

con�dentiality violations with high precision and recall while signi�cantly reducing the

analysis runtime compared to the state of the art.

Our work bene�ts software architects by helping them more accurately identify con�den-

tiality violations by considering uncertainty within the software and its context. Applying

our tool-supported and automated analyses requires both less e�ort and less expertise. Last,

it has already been shown that our �ndings can be generalized to other research concerns,

e.g., regarding uncertainty propagation and interaction in self-adaptive systems.

ii

Zusammenfassung

In dieser Dissertation untersuchen wir die architekturbasierte Analyse von Vertraulichkeit

unter Ungewissheit. Wir präsentieren eine Klassi�kation von Ungewissheit mit Bezug

auf Vertraulichkeit, einen Katalog von Ungewissheitsquellen, eine Ungewissheitsauswir-

kungsanalyse, die Ungewissheit propagiert, um ihre Auswirkungen auf die Vertraulichkeit

eines Systems vorherzusagen, und Vertraulichkeitsanalysen unter Ungewissheit, die Ver-

letzungen von Vertraulichkeitsanforderungen unter Berücksichtigung von Ungewissheit

identi�zieren.

In unserer vernetzten Welt werden täglich immer größere Datenmengen ausgetauscht, ver-

arbeitet und gespeichert. Dies ermöglicht eine Vielzahl moderner Anwendungen in vielen

Bereichen, von Mobilitätssystem bis zur Gesundheitsbranche, bringt aber auch erhebli-

che Herausforderungen mit sich. Eine besondere Herausforderung ist die Vertraulichkeit,

welche fordert, dass Informationen nicht an unbefugte Personen oder Organisationen

weitergegeben werden dürfen. Der Anstieg der Cyberkriminalität und die Allgegenwart

von Datenschutzverletzungen unterstreichen die Relevanz von Vertraulichkeit, da ihr

Verlust erhebliche Auswirkungen auf den Wohlstand der Betro�enen und die gesellschaft-

liche Akzeptanz haben kann. Wie von Ansätzen wie Sicherheit und Datenschutz durch

Technikgestaltung gefordert, sollte die Vertraulichkeit bereits in der frühen Entwicklung

berücksichtigt und analysiert werden, z. B. auf der Abstraktionsebene der Softwarearchi-

tektur. Hier wurden zahlreiche architekturbasierte Analyseansätze vorgeschlagen. Auf

der Grundlage der Bewertung von Architekturmodellen können diese Analysen Verstöße

gegen Vertraulichkeitsanforderungen genau und frühzeitig erkennen.

Heutige Softwaresysteme werden jedoch weder isoliert entwickelt noch betrieben und

unterliegen Ungewissheiten innerhalb des Softwaresystems, seines Entwurfs, oder seiner

Umgebung. Ungewissheit, die oft als Mangel an Wissen oder Informationen bezeichnet

wird, ist in modernen, vernetzten Softwaresystemen unvermeidlich. Wenn sie nicht um-

fassend gehandhabt wird, kann es zu Vertraulichkeitsverletzungen kommen, weil die

Ungewissheit frühere Analyseergebnisse invalidiert, z. B. weil Ein�üsse aus dem Sys-

temkontext nicht angemessen berücksichtigt wurden oder weil sich Benutzer und Dritte

anders verhalten als ursprünglich angenommen. Die Lösung dieses Problems erfordert

neue Ansätze zur Identi�zierung und Dokumentation von Ungewissheitsquellen, da man

nicht analysieren kann, was man nicht kennt. Softwarearchitektinnen und Softwarearchi-

tekten stehen vor Herausforderungen sowohl bei der Prüfung von Softwarearchitekturen

als auch bei der Bewertung der Vertraulichkeit unter Ungewissheit.

Obwohl die Bewertung von Architekturen unter Ungewissheit umfassend erforscht wurde,

konzentrieren sich bestehende Ansätze auf andere Qualitätseigenschaften wie Leistung,

iii

Zusammenfassung

Kosten oder Zuverlässigkeit, berücksichtigen aber nicht die Vertraulichkeit. Umgekehrt

werden bei bestehenden Analysen der Vertraulichkeit während der Entwurfszeit die Aus-

wirkungen der Ungewissheit auf die Vertraulichkeit nicht berücksichtigt. Jüngste Studien

zeigen auch einen Mangel an Ungewissheitsmanagement, genauer Darstellung von Unge-

wissheitsquellen und Ende-zu-Ende-Ansätzen, die Ungewissheit berücksichtigen.

In dieser Dissertation befassen wir uns mit der fehlenden gleichzeitigen Berücksichti-

gung von Unsicherheit und Vertraulichkeit in architekturbasierten Analysen. Es wird ein

Ansatz zur Identi�zierung, Klassi�kation, Propagation und Analyse von Ungewissheit

und deren Auswirkungen auf die Vertraulichkeit eines Systems unter Verwendung der

Architekturabstraktion vorgestellt. Zunächst stellen wir eine Klassi�kation der Ungewiss-

heit in Bezug auf die Vertraulichkeit vor, die die Terminologie für das Verständnis und

die Diskussion der Beziehung zwischen Ungewissheit und Vertraulichkeit zur Verfügung

stellt. Wir ergänzen diese Klassi�kation durch einen Katalog von Ungewissheitsquellen,

der deren Identi�zierung vereinfacht und den Mangel an Bewusstsein behebt. Zweitens

führen wir eine architekturbasierte Analyse der Auswirkungen von Ungewissheit ein.

Durch die Propagation von Ungewissheit innerhalb der Softwarearchitektur können Soft-

warearchitektinnen und Softwarearchitekten potenzielle Vertraulichkeitsverletzungen mit

minimalem Aufwand vorhersagen. Drittens stellen wir auf Ungewissheit basierende Ver-

traulichkeitsanalysen vor. Diese Analysen betrachten Ungewissheitsquellen als Entitäten

erster Klasse in der Softwarearchitektur und identi�zieren Vertraulichkeitsverletzungen

aufgrund von Ungewissheit.

Wir validieren unsere Beiträge anhand von sechs Evaluationsszenarien und zwei Nut-

zerstudien. Zusätzlich zur Untersuchung der Qualität unserer Klassi�kation evaluieren

wir die Benutzerfreundlichkeit unseres Katalogansatzes und die Genauigkeit aller unserer

Analysen. Darüber hinaus untersuchen wir die Aufwandsreduktion unserer Ungewiss-

heitsauswirkungsanalyse und die Skalierbarkeit der Vertraulichkeitsanalysen unter Unge-

wissheit. Die Ergebnisse der Nutzerstudien zeigen, dass die Kombination der Klassi�kation

mit unserem Katalog der Ungewissheitsquellen hilft, Ungewissheitsquellen zu identi�-

zieren und zu beschreiben. Anschließend kann die Ungewissheitsauswirkungsanalyse

die Auswirkungen mit einem F1-Score von 0,88 genau vorhersagen und gleichzeitig den

Aufwand im Vergleich zur manuellen Analyse um 86% reduzieren. Schließlich werden

durch die Analyse von Ungewissheiten in Bezug auf die Vertraulichkeit Verstöße gegen

die Vertraulichkeit mit hoher Präzision und Ausbeute identi�ziert, während die Laufzeit

der Analyse im Vergleich zum Stand der Technik erheblich reduziert wird.

Unsere Arbeit kommt Softwarearchitektinnen und Softwarearchitekten zugute, indem

sie ihnen hilft, Vertraulichkeitsverletzungen genauer zu identi�zieren, indem sie die Un-

gewissheit innerhalb der Software und ihres Kontexts berücksichtigt. Die Anwendung

unserer werkzeuggestützten und automatisierten Analysen erfordert sowohl weniger

Aufwand als auch weniger Expertenwissen. Schließlich wurde bereits gezeigt, dass unsere

Erkenntnisse auf andere Forschungsfragen verallgemeinert werden können, z. B. in Bezug

auf die Propagation und Interaktion von Ungewissheit in selbstadaptiven Systemen.

iv

Danksagung

1560 Tage.

1560 Tage liegen zwischen meinem ersten Arbeitstag als wissenschaftlicher Mitarbeiter

am Karlsruher Institut für Technologie (KIT) und der erfolgreichen Verteidigung meiner

Dissertation. Zum Glück musste ich den Weg an den allermeisten dieser Tage nicht allein

gehen—wofür ich mich nachfolgend bedanken möchte.

Zuallererst und vor allem möchte ich mich bei meiner Frau Alina bedanken, die mich

stets unterstützt hat, egal, ob ich gerade übermotiviert und viel zu fokussiert geforscht

oder verzweifelt alles infrage gestellt habe. Sie hat mir den bei einer Promotion dringend

notwendigen Rückhalt gegeben, jederzeit an mich geglaubt und somit diesen großen Erfolg

überhaupt erst möglich gemacht. Ebenfalls möchte ich meinen Eltern von ganzem Herzen

für ihre Unterstützung und unermüdliche Ermutigung danken. Bedanken möchte ich mich

auch bei meinen Freunden und Kollegen außerhalb der Universität, denen ich auch in den

letzten vier Jahren nicht die Aufmerksamkeit geschenkt habe, die sie verdient hätten.

Während meiner Zeit am Lehrstuhl hatte ich die Möglichkeit mit vielen motivierten und

äußerst fähigen Studierenden zusammen zu arbeiten. Hier möchte ich mich insbesondere

bei Niko bedanken, mit dem ich als Allererstes an meinen neuen Ideen geforscht habe, und

bei Felix, der mir am Schluss tatkräftig geholfen hat, die prototypische Umsetzung meiner

Konzepte zu �nalisieren. Ein weiteres Danke für größere und kleinere Beiträge zu meiner

Forschung geht an Gabriel, Tizian, Denis, Daniel, Oliver, Anne-Kathrin, Alexander, Tom,

Lilian, Benjamin und Jonas. Ich hatte während meiner Promotion zahlreiche Gelegenheiten

zu reisen und meinen Horizont zu erweitern. Ich möchte mich insbesondere bei Simon,

Marc und Mario für die neuen Einblicke bedanken. Ebenfalls bedanken möchte ich mich

bei den Organisatoren und Teilnehmern des Bertinoro USAS Seminars und der Dagstuhl

Seminare, welche mir besonders in Erinnerung geblieben sind.

Natürlich dürfen in dieser Danksagung meine großartigen Kolleginnen und Kollegen am

Lehrstuhl nicht fehlen. Zuerst möchte ich mich bei Stephan und Maximilian bedanken,

die nicht nur wichtige Vorarbeit für meine Forschung geleistet haben, sondern mich auch

herzlich am Lehrstuhl aufgenommen und insbesondere in der Anfangszeit angeleitet haben.

Ein weiterer Dank gebührt meinen Bürokollegen Frederik, Sandro, Nicolas und Nils für den

regen—und oft genug nicht fachbezogenen—Austausch. Insbesondere bei Nicolas möchte

ich mich für die jahrelange extrem erfolgreiche und spaßige Zusammenarbeit bedanken:

Wie wir innerhalb so kurzer Zeit von Grund auf ein neues Analyse-Framework samt Team

aufgebaut haben, war mindestens genauso ein Highlight wie die vielen gemeinsamen Kaf-

feepausen und Weinwanderungen. Auch bei Timur und Larissa möchte ich mich bedanken:

v

Danksagung

Zu dritt haben wir nicht nur fast zeitgleich mit der Promotion begonnen, sondern diese

auch fast gleichzeitig abgeschlossen; der regelmäßige Austausch im alltäglichen Wahnsinn

hat sehr gutgetan. Zudem habe ich mit Timur—und später Dominik und Robin—zusammen

den Plagiatsdetektor JPlag wiederbelebt und von einem Software-Archäologieprojekt in ein

erfolgreiches und aktives Open-Source-Projekt verwandelt. Das war eine steile Entwick-

lung und ich bin extrem stolz darauf, was wir daraus gemacht haben. Steil waren auch die

Wände, die ich während meiner Promotion erklommen habe—nicht nur im übertragenen

Sinne. Hier möchte ich Tobias danken, der mich nicht nur zu einem neuen Hobby geführt,

sondern auch während des Diss-Endspurts unterstützt hat.

Ein weiteres Danke gebührt den übrigen Lehrstuhl-Seniors. Hier möchte ich zuerst Anne,

Christopher und Erik für die zahlreichen Hinweise, Hilfestellungen und Möglichkeiten

danken. Ebenfalls bedanken möchte ich mich bei Ra�aela, welche viele Grundlagen für

meine Arbeit erforscht und mir zahlreiche Türen geö�net hat. Der meiste Dank gebührt

hier aber natürlich Robert, welcher mich von Anfang an in meiner Promotion begleitet

und betreut hat. Die zahlreichen Diskussionen, die Einbindung in Forschungsprojekte

sowie die gemeinsame Publikationsplanung haben eine maßgebliche Auswirkung auf

meine Forschung gehabt. Zum Schluss—denn Professoren stehen traditionell am Ende der

Autorenliste—möchte ich mich bei meinem Erstgutachter und Betreuer Ralf bedanken.

Seine Anregungen, Feedback, und manchmal auch herausfordernden Ideen haben diese

Doktorarbeit deutlich beein�usst. Noch mehr bin ich aber für alles außerhalb der Promotion

dankbar; seien es die Einblicke in die Wissenschaft, die zahlreichen Möglichkeiten, mich

kreativ einzubringen, oder die stundenlangen Aus�üge in die Philosophie.

Mein Dank gilt auch allen, die mich während meiner Promotion begleitet haben, aber hier

nicht direkt oder indirekt genannt wurden. Diese 1560 Tage waren eine herausfordernde

Zeit, in der ich extrem viel erleben durfte. Dennoch bin ich froh, dieses Kapitel abgeschlos-

sen zu haben und hinter mir lassen zu können. Danke für alles. Auf die Zukunft!

vi

Contents

Abstract . i

Zusammenfassung . iii

Danksagung . v

List of Figures . xiii

List of Tables . xvii

List of Algorithms . xix

List of Listings . xxi

List of Acronyms . xxiii

I. Prolog 1

1. Introduction . 3
1.1. Motivation . 3

1.2. Problem Statement . 5

1.3. Research Objective . 7

1.4. Approach . 8

1.5. Outline and Reading Paths . 10

1.6. Summary and Outlook . 11

1.7. In Simpler Words . 11

2. Foundations . 13
2.1. Uncertainty . 13

2.2. Con�dentiality . 16

2.3. Model-Driven Software Development . 17

2.4. Software Architecture . 18

2.5. Data Flow Diagrams . 19

2.5.1. Elements of Data Flow Diagrams 20

2.5.2. Uni�ed Modeling Primitives . 21

2.5.3. Directed Acyclic Graphs . 22

2.6. Summary and Outlook . 22

vii

Contents

2.7. In Simpler Words . 23

3. Running Example . 25
3.1. Online Shop Software Architecture . 26

3.2. Exemplary Uncertainty Sources . 27

3.3. Summary and Outlook . 28

3.4. In Simpler Words . 29

II. Contributions 31

4. Overview . 33
4.1. Procedure for Uncertainty-Aware Analyses 33

4.2. Overview of the Contributions . 37

4.3. Tool Support . 38

4.4. Illustration using the Running Example 39

4.5. Summary and Outlook . 39

4.6. In Simpler Words . 40

5. Identification and Classification of Uncertainty Regarding Confidentiality . . . 41
5.1. Problem Statement . 43

5.2. The Relation of Uncertainty, Con�dentiality, and Software Architecture . 44

5.2.1. De�ning Software-Architectural Uncertainty 44

5.2.2. Existing Notions of Uncertainty 45

5.2.3. Investigating Existing Uncertainty Classi�cations 47

5.3. Classi�cation of Uncertainty Regarding Con�dentiality 48

5.3.1. Classi�cation Category: Location 49

5.3.2. Classi�cation Category: Architectural Element Type 50

5.3.3. Classi�cation Category: Type . 51

5.3.4. Classi�cation Category: Manageability 52

5.3.5. Classi�cation Category: Resolution Time 53

5.3.6. Classi�cation Category: Reducible by ADD 54

5.3.7. Classi�cation Category: Impact on Con�dentiality 54

5.3.8. Classi�cation Category: Severity of the Impact 55

5.3.9. Building on the Uncertainty Classi�cation 56

5.4. Applying the Classi�cation to the Running Example 57

5.5. Representing Uncertainty in Data Flow Diagrams 59

5.5.1. Mapping Uncertainty to Data Flow Diagrams 59

5.5.2. Mapping Uncertainty to Directed Acyclic Graphs 61

5.6. Uncertainty Catalogs to Support the Identi�cation 63

5.7. A Collaborative Approach for Uncertainty Catalogs 66

5.8. Assumptions and Limitations . 68

5.9. Summary and Outlook . 69

5.10. In Simpler Words . 71

viii

Contents

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis 73
6.1. Problem Statement . 75

6.2. Representing Uncertainty in Architectural Models 76

6.2.1. Modeling Uncertainty Sources and Uncertainty Impacts 76

6.2.2. A Meta Model of the Uncertainty Impact in Data Flow Diagrams 78

6.2.3. Annotating Uncertainty Sources in the Palladio Component Model 80

6.3. Uncertainty Impact Analysis for Architectural Models 83

6.3.1. Adapting Change Impact Analysis to Uncertainty Propagation . 83

6.3.2. Uncertainty Propagation of Component Uncertainty 85

6.3.3. Uncertainty Propagation of Interface Uncertainty 87

6.3.4. Uncertainty Propagation of Connector Uncertainty 90

6.3.5. Uncertainty Propagation of External Uncertainty 92

6.3.6. Uncertainty Propagation of Behavior Uncertainty 94

6.3.7. Applying Architectural Uncertainty Impact Analysis 95

6.4. Uncertainty Impact Analysis for Data Flow Diagrams 97

6.4.1. Formal Foundation for Uncertainty Impact Analysis 98

6.4.2. Algorithm for Uncertainty Impact Analysis in Data Flow Diagrams 99

6.5. Uncertainty Impact Analysis regarding Con�dentiality 100

6.5.1. Coupling the Uncertainty Impact Analysis Approaches 101

6.5.2. Algorithm for the Coupled Uncertainty Impact Analysis 101

6.5.3. Applying Uncertainty Impact Analysis Regarding Con�dentiality 103

6.5.4. Tool Support for Uncertainty Impact Analysis 105

6.6. Addressing the Uncertainty Awareness Problem 106

6.7. Uncertainty Propagation in Uncertainty Flow Diagrams 107

6.8. Assumptions and Limitations . 111

6.9. Summary and Outlook . 113

6.10. In Simpler Words . 115

7. Uncertainty-Aware Data Flow Analysis to Identify Confidentiality Violations . . 117
7.1. Problem Statement . 119

7.2. A Framework for Architectural Data Flow Analysis 120

7.2.1. Representing Data Flows in Data Flow Analysis 120

7.2.2. Label Propagation to Enable Scalable Con�dentiality Analysis . . 124

7.3. Representing Uncertainty in Data Flow Analysis 125

7.3.1. Available Information in Uncertainty-Aware Data Flow Analysis 126

7.3.2. Levels of Uncertainty-Awareness in Data Flow Analysis 127

7.3.3. Examples for Uncertainty-Aware Data Flow Analysis 129

7.4. Uncertainty Type-Speci�c Data Flow Analysis 131

7.4.1. Data Flow Analysis Under Structural Uncertainty 131

7.4.2. Data Flow Analysis Under Environmental Uncertainty 134

7.5. Uncertainty Type-Agnostic Data Flow Analysis 140

7.5.1. Tracing Uncertainty in Data Flow Analysis 140

7.5.2. Impact-Aware Data Flow Analysis Under Uncertainty 145

7.6. Complexity of Data Flow Analysis Under Uncertainty 154

7.7. Assumptions and Limitations . 158

ix

Contents

7.8. Summary and Outlook . 160

7.9. In Simpler Words . 162

III. Validation 165

8. Evaluation Scenarios . 167
8.1. Overview . 167

8.2. TravelPlanner . 169

8.3. DistanceTracker . 170

8.4. OnlineShop . 171

8.5. CoronaWarnApp . 172

8.6. MobilityAsAService . 174

8.7. JPlag . 175

8.8. Summary and Outlook . 177

8.9. In Simpler Words . 177

9. Evaluation . 179
9.1. Overview . 180

9.1.1. Evaluation Plan for the First Contribution 180

9.1.2. Evaluation Plan for the Second Contribution 188

9.1.3. Evaluation Plan for the Third Contribution 192

9.2. Evaluation of the Classi�cation and Identi�cation of Uncertainty 195

9.2.1. Evaluation Design . 195

9.2.2. Results and Discussion of the Structure’s Suitability 197

9.2.3. Results and Discussion of the Applicability 198

9.2.4. Results and Discussion of the Purpose 200

9.2.5. Results and Discussion of the Usability 201

9.2.6. Threats to Validity . 203

9.3. Evaluation of the Uncertainty Impact Analysis 205

9.3.1. Evaluation Design . 205

9.3.2. Results and Discussion of the Accuracy 206

9.3.3. Results and Discussion of the E�ort Reduction 208

9.3.4. Threats to Validity . 210

9.4. Evaluation of the Uncertainty-Aware Data Flow Analysis 211

9.4.1. Evaluation Design . 211

9.4.2. Results and Discussion of the Scalability 213

9.4.3. Results and Discussion of the Accuracy 215

9.4.4. Threats to Validity . 217

9.5. Summary and Outlook . 218

9.6. In Simpler Words . 221

x

Contents

IV. Epilog 223

10. Related Work . 225
10.1. Uncertainty and Software Architecture 225

10.1.1. Surveys and Research Roadmaps 226

10.1.2. Uncertainty Taxonomies and Classi�cations 227

10.1.3. Architecting Self-Adaptive Systems 228

10.1.4. Architecture Evaluation Under Uncertainty 228

10.1.5. Architecture-Based Analysis . 230

10.1.6. Architectural Design Decisions and Uncertainty 231

10.1.7. Uncertainty Management and Knowledge Sharing 232

10.1.8. Summary . 233

10.2. Software Architecture and Con�dentiality 233

10.2.1. Model-based Security Analysis 234

10.2.2. Data Flow Analysis . 235

10.2.3. Modeling Con�dentiality Requirements 236

10.2.4. Summary . 237

10.3. Con�dentiality and Uncertainty . 237

10.3.1. Uncertainty-Aware Con�dentiality Analysis 238

10.3.2. Access Control Under Uncertainty 238

10.3.3. Summary . 239

10.4. Summary and Outlook . 239

10.5. In Simpler Words . 240

11. Conclusion . 243
11.1. Summary . 243

11.2. Bene�ts . 246

11.3. Future Work . 247

11.4. In Simpler Words . 250

Bibliography . 251

V. Appendix 275

A. Running Example in the Palladio Component Model 277

B. Impact Sets of the Running Example . 281

C. All Confidentiality Violations in the Running Example 287

D. Palladio Repository Model of the Corona Warn App 289

E. Towards a Graphical Notation for Uncertainty in Data Flow Diagrams 295

xi

List of Figures

1.1. Schematic and informal visualization of the presented approach. 9

2.1. The four meta levels with examples from our domain, based on Stahl et al. [246]. 17

2.2. A Data Flow Diagram (DFD) showing all four element types in a simpli�ed

online shop scenario. 20

2.3. Meta model of uni�ed modeling primitives, based on Seifermann et al. [235]. 21

3.1. Combined component and deployment diagram of the running example. . . 25

3.2. Exemplary Data Flow Diagram (DFD) of the running example. 27

4.1. Informal overview of the central activities of uncertainty-aware analyses . . 34

4.2. Proposed analysis procedure showing the modeling and analysis activities and

assigned roles. 35

5.1. Combined component and deployment diagram of the running example with

annotated uncertainty sources, the system context boundary, and the impact

of the user input uncertainty source. 46

5.2. Data �ow of the running example as Directed Acyclic Graph (DAG) with

annotated primary and secondary uncertainty, denoted by question marks. . 62

5.3. Simpli�ed metamodel of the uncertainty source catalog. 64

5.4. Uncertainty source about the “Provider Trustworthiness” with its parent un-

certainty source “Unpredictable Environment” and related uncertainties. . . 65

5.5. Screenshot of the detail view of our tooling. 66

6.1. Simpli�ed mapping of the components of the running example to a Data Flow

Diagram (DFD). 76

6.2. Simpli�ed view on the relation of software-architectural uncertainty sources,

their propagated impact, software architectural models, and Data Flow Dia-

grams (DFDs). 77

6.3. Meta model of Data Flow Diagrams (DFDs) with the �ve di�erent uncertainty

impact types. 79

6.4. Informally illustrated relation of the di�erent sets of change impact analysis

(left) and uncertainty impact analysis (right). 84

6.5. A simple yet versatile Data Flow Diagram (DFD) with sources (A–C), processes

(1–12), sinks (W–Z), and data �ows. Uncertainty is denoted by question marks

(U1, U2) and the impact set is colored gray. 97

xiii

List of Figures

6.6. Informal illustration of the propagation of an uncertainty source in the ar-

chitectural model (top) and a Data Flow Diagram (DFD) (bottom) using the

annotation function a and the mapping function m. 104

6.7. Simpli�ed meta model of the Uncertainty Flow Diagram (UFD) notation. . . 109

6.8. An Uncertainty Flow Diagram (UFD) showing heterogeneous uncertainty

sources and hierarchical modeling. 110

7.1. Two Transpose Flow Graphs (TFGs) representing two independent data �ows. 121

7.2. A simple Transpose Flow Graph (TFG), annotated with node labels and node

behaviors. 122

7.3. Simpli�ed Palladio Component Model (PCM) instance and the corresponding

Transpose Flow Graph (TFG) with annotated node labels, data labels, and

numbered transformation traces. 123

7.4. Initial state, and intermediate and �nal results of the label propagation in a

simple Transpose Flow Graph (TFG). Node labels are highlighted gray, data

labels have a dashed border. 125

7.5. Activity diagram showing the interplay of PerOpteryx and the data �ow

analysis using swimlanes. 133

7.6. A simpli�ed trust chain that incorporates types of factors of the GPS location

example. 136

7.7. Excerpt from the class diagram of the Fuzzy Inference System (FIS) meta model. 137

7.8. Data Flow Diagram (DFD) of the extended running example with additional ac-

tors and their node labels. Con�dentiality violations are marked with lightning

bolts. 138

7.9. Excerpts of two Transpose Flow Graphs (TFGs) from the running example

with annotated uncertainty impacts and a con�dentiality violation, marked

with a lightning bolt. 143

7.10. Overview of the meta model for expressing uncertainty sources and scenarios

in architectural models. Existing elements of the software architecture are

highlighted gray. 145

7.11. Meta model of uncertainty sources and scenarios in the Palladio Component

Model (PCM). 146

7.12. Meta model of Nondeterministic Data Flow Diagrams (NDFDs). 148

7.13. Directed Acyclic Graph (DAG) of the Transpose Flow Graph (TFG) represent-

ing the item purchase in the running example, with primary and secondary

uncertainty, denoted by question marks. 150

7.14. Simpli�ed overview of all three Transpose Flow Graphs (TFGs) of the running

example with annotated primary and secondary uncertainties. 155

8.1. Simpli�ed component and deployment diagram of the TravelPlanner evalua-

tion scenario. 169

8.2. Simpli�ed component and deployment diagram of the DistanceTracker evalu-

ation scenario. 170

8.3. Simpli�ed component and deployment diagram of the OnlineShop evaluation

scenario. 171

xiv

List of Figures

8.4. Simpli�ed component and deployment diagram of the CoronaWarnApp eval-

uation scenario. 172

8.5. Simpli�ed component and deployment diagram of the MobilityAsAService

evaluation scenario. 174

8.6. Simpli�ed component and deployment diagram of the JPlag evaluation scenario. 175

9.1. Overview of the Goal Question Metric (GQM) plan of the �rst goal regarding

Contribution C1. 181

9.2. Overview of the Goal Question Metric (GQM) plan of the second goal regarding

Contribution C1. 183

9.3. Overview of the Goal Question Metric (GQM) plan of the third goal regarding

Contribution C1. 185

9.4. Overview of the Goal Question Metric (GQM) plan of the fourth goal regarding

Contribution C1. 187

9.5. Overview of the Goal Question Metric (GQM) plan of the �fth goal regarding

Contribution C2. 189

9.6. Overview of the Goal Question Metric (GQM) plan of the sixth goal regarding

Contribution C2. 190

9.7. Overview of the Goal Question Metric (GQM) plan of the seventh goal regard-

ing Contribution C3. 192

9.8. Overview of the Goal Question Metric (GQM) plan of the eighth goal regarding

Contribution C3. 193

9.9. Scalability results of the CoronaWarnApp evaluation scenario. Lower is better. 214

9.10. Scalability results of the MobilityAsAService evaluation scenario. Lower is

better. 214

A.1. Palladio repository model of the running example. 278

A.2. Exemplary Palladio Service E�ect Speci�cation (SEFF) of the running example. 279

A.3. Uncertainty model of the running example, showing four uncertainty sources

and their scenarios. 279

D.1. Palladio component repository model of the Corona Warn App evaluation

scenario (overview). 289

D.2. Palladio component repository model of the Corona Warn App evaluation

scenario (part 1 of 4). 290

D.3. Palladio component repository model of the Corona Warn App evaluation

scenario (part 2 of 4). 291

D.4. Palladio component repository model of the Corona Warn App evaluation

scenario (part 3 of 4). 292

D.5. Palladio component repository model of the Corona Warn App evaluation

scenario (part 4 of 4). 293

E.1. Initial proposal for graphically representing uncertainty in Data Flow Diagrams

(DFDs). 295

xv

List of Tables

2.1. Categories and options to classify the location and level of uncertainty. . . . 14

2.2. Categories and options to classify the nature, manageability, and emerging

time of uncertainty. 15

2.3. Categories and options to classify the impact on quality, relationship, and

source of uncertainty. 16

5.1. Uncertainty classi�cation regarding con�dentiality. Category: Location. . . . 49

5.2. Uncertainty classi�cation regarding con�dentiality. Category: Architectural

Element Type. 50

5.3. Uncertainty classi�cation regarding con�dentiality. Category: Type. 51

5.4. Uncertainty classi�cation regarding con�dentiality. Category: Manageability. 52

5.5. Uncertainty classi�cation regarding con�dentiality. Category: Resolution Time. 53

5.6. Uncertainty classi�cation regarding con�dentiality. Category: Reducible by

ADD. 54

5.7. Uncertainty classi�cation regarding con�dentiality. Category: Impact on

Con�dentiality. 54

5.8. Uncertainty classi�cation regarding con�dentiality. Category: Severity of the

Impact. 55

5.9. Exemplary classi�cation of the uncertainty sources U1 and U2 in the running

example. 57

5.10. Exemplary classi�cation of the uncertainty sources U3 and U4 in the running

example. 58

5.11. Mapping of the �ve uncertainty types to the uni�ed modeling primitives. . . 60

6.1. Mapping of the �ve uncertainty types to Palladio Component Model (PCM)

elements. 81

6.2. Starting Impact Set (SIS) representing the annotated uncertainty sources in

the running example. 84

6.3. Shortened results of all steps of the uncertainty impact analysis regarding

con�dentiality. 103

7.1. Available information categories for uncertainty-aware con�dentiality analysis. 126

7.2. Uncertainty scenarios of all uncertainty sources of the running example. . . 130

7.3. Awareness levels and type speci�city of uncertainty-aware data �ow analysis

approaches. 131

7.4. Relation of Transpose Flow Graphs (TFGs) and uncertainty sources in the

running example. 141

xvii

List of Tables

7.5. Modeling the uncertainty sources and their scenarios in the running example. 147

8.1. Overview of all evaluation scenarios, their domain, their origin, and their usage. 168

8.2. Size metrics, uncertainty sources, and con�dentiality violations of all evalua-

tion scenarios. 168

9.1. Results of evaluation Goal G1 regarding the classi�cation structure’s suitability. 197

9.2. Results of evaluation Goal G2 regarding the classi�cation’s applicability. . . 198

9.3. Results of evaluation Goal G3 regarding the classi�cation’s purpose. 200

9.4. Results of evaluation Goal G4 regarding the catalog’s usability. 201

9.5. Percentage of correct answers in the user study of Goal G4 grouped by prior

knowledge. 202

9.6. Results of evaluation Goal G5 regarding the uncertainty impact analysis’

accuracy. 206

9.7. Accuracy and e�ort reduction of all sub-scenarios of the CoronaWarnApp and

MobilityAsAService. 207

9.8. Results of evaluation Goal G6 regarding the uncertainty impact analysis’ e�ort

reduction. 208

9.9. Results of evaluation Goal G7 regarding the uncertainty-aware data �ow

analyses’ scalability. 213

9.10. Results of evaluation Goal G8 regarding the uncertainty-aware data �ow

analyses’ accuracy. 215

9.11. Joint results of all evaluation goals, showing all questions, metrics, and results. 219

xviii

List of Algorithms

6.1. Algorithm for component uncertainty propagation 86

6.2. Algorithm for retrieving the initial StartAction of a Service E�ect Speci�-

cation (SEFF) . 86

6.3. Algorithm for retrieving all StartActions that describe a signature 87

6.4. Algorithm for retrieving all ExternalCallActions that call a signature . . 88

6.5. Algorithm for retrieving all EntryLevelSystemCalls that call a signature . 89

6.6. Algorithm for interface uncertainty propagation 90

6.7. Algorithm for connector uncertainty propagation 91

6.8. Algorithm for external uncertainty propagation 93

6.9. Algorithm for behavior uncertainty propagation 94

6.10. Algorithm for uncertainty propagation in data �ow diagrams 100

6.11. Algorithm for uncertainty impact analysis regarding con�dentiality . . . 102

7.1. Algorithm for vertex evaluation in Transpose Flow Graphs (TFGs) 124

7.2. Algorithm for label propagation in Transpose Flow Graphs (TFGs) 124

7.3. Algorithm for scenario-aware data �ow analysis under uncertainty . . . 134

7.4. Algorithm for graph-aware data �ow analysis under uncertainty 141

7.5. Algorithm for �ltering variations in graph-aware analysis 142

7.6. Algorithm for impact-aware data �ow analysis under uncertainty 151

7.7. Algorithm for processing vertices with primary and secondary uncertainty 152

xix

List of Listings

6.1. Shortened output of the uncertainty impact analysis showing the impact

of Uncertainty U2. 105

6.2. Exemplary interaction of a software architect with the extended uncer-

tainty impact analysis. 107

B.1. Result of the uncertainty impact analysis of Uncertainty U1 in the running

example. 282

B.2. Result of the uncertainty impact analysis of Uncertainty U2 in the running

example. 283

B.3. Result of the uncertainty impact analysis of Uncertainty U3 in the running

example. 284

B.4. Result of the uncertainty impact analysis of Uncertainty U4 in the running

example. 285

C.1. All uncertainty scenarios of the running example that cause con�dentiality

violations. 287

C.2. Detailed result of the �rst con�dentiality violation of the running example. 288

xxi

List of Acronyms

ABAC Attribute-Based Access Control . 16, 135

ADD Architectural Design Decision4, 18, 43–48, 52–55, 57f., 69f., 119, 131f., 196, 200, 202,

231f., 239, 246

ADL Architectural Description Language18f., 35f., 43�., 48�., 56, 59, 61, 73�., 80, 82, 85, 96,

100, 111, 117, 174, 235

AIS Actual Impact Set . 83f., 95

BFS Breadth-First Search . 99f.

CBSE Component-based Software Engineering . 18, 234

CIS Candidate Impact Set . 83f., 88, 95

CPS Cyber-Physical System . 4, 37, 114, 126, 204, 249

CVSS Common Vulnerability Scoring System . 55

DAG Directed Acyclic Graph . . . 11, 22f., 59, 61�., 69f., 75, 79, 98–101, 105, 108, 113, 120�.,

124�., 144, 148–153, 157�., 161, 247, 249, 295f.

DFD Data Flow Diagram4, 19–23, 26, 28, 35, 37f., 40, 42–45, 59–63, 68�., 74–80, 82, 85, 90,

92, 94–105, 108, 110f., 113, 115, 117, 119–126, 128, 130, 138, 140, 142, 144, 148�., 158,

168, 190f., 205f., 208�., 217, 220, 234–237, 244, 248f., 281, 295f.

DFS Depth-First Search . 99f., 105, 124, 154

DLT Distributed Ledger Technology . 173f., 177

DSL Domain-Speci�c language . 160, 235f., 248

EMF Eclipse Modeling Framework . 17, 146

FIS Fuzzy Inference System . 135, 137�., 145, 160, 231

GDPR General Data Protection Regulation . 3, 16, 26, 50, 58, 176, 236

GQM Goal Question Metric . 179f., 194, 204f., 210f., 217f., 221, 245

IIoT Industrial Internet of Things . 4

IoT Internet of Things . 3

JSON JavaScript Object Notation . 43, 66

xxiii

List of Acronyms

KAMP Karlsruhe Architectural Maintainability Prediction 83, 88, 111

LLM Large Language Models . 3, 247

MAPE-K Monitor-Analyze-Plan-Execute-Knowledge . 34, 108

MDSD Model-Driven Software Development . 11, 17f., 23, 233

MOF Meta Object Facility . 17

NDFD Nondeterministic Data Flow Diagram 144, 148–154, 247, 295f.

OCL Object Constraint Language . 234

OMG Object Management Group . 13f., 17, 225, 227, 240

OWASP Open Worldwide Application Security Project 4, 41, 117, 134

PCM Palladio Component Model . . 18f., 28, 35, 38, 48, 50, 56, 59, 74–77, 80–88, 90–94, 96,

100f., 103, 105f., 111, 113, 117, 120, 122f., 125, 132, 146f., 149, 153, 158, 161, 167–176,

234f., 237, 248, 277, 289

PSUM Precise Semantics for Uncertainty Modeling13�., 50, 52, 108, 200, 225, 227, 230, 240,

295

RBAC Role Based Access Control . 16, 212, 215, 234

SAS Self-Adaptive System . 4, 15, 28, 33f., 41, 45, 47f., 69, 74, 107f., 110, 126, 225–228, 240,

247, 249

SEFF Service E�ect Speci�cation . 18, 82, 85–89, 93–96, 100, 104, 140, 168–172, 174f., 277

SIS Starting Impact Set . 83f., 95, 97

SLR Systematic Literature Review6, 14, 37, 41, 129, 159, 167, 179, 225, 228, 233, 239f., 295

SUS System Usability Scale . 184, 188, 195f., 199, 201f., 204, 218

TEE Trusted Execution Environment . 173f., 177

TFG Transpose Flow Graph . . 120–125, 140–144, 149–158, 160, 168–172, 174f., 192, 212�.,

217, 220, 229

UAP Uncertainty Awareness Problem 41�., 63, 65, 69, 74f., 106f., 113, 187, 194, 218

UFD Uncertainty Flow Diagram . 37, 74, 108–113, 115, 159, 161, 244

UIP Uncertainty Interaction Problem74f., 96f., 107f., 110, 112f., 119, 126, 161, 228, 244, 249

UML Uni�ed Modeling Language 17, 19, 75, 85, 91, 108, 111, 230, 233�., 237

XACML eXtensible Access Control Markup Language . 16, 234

XML Extensible Markup Language . 16, 43

xxiv

Part I.

Prolog

1. Introduction

This dissertation is titled “Architecture-Based and Uncertainty-Aware Con�dentiality

Analysis”. This title comprises the two most relevant aspects that set the scene for this

work: Con�dentiality and Uncertainty. Both represent extensively researched and highly

relevant topics—but it is the intersection of the two areas that represents a gap in the

state of the art. In this dissertation, we
1

address this gap and present new, tool-supported

methods to reason about con�dentiality under software-architectural uncertainty based on

architectural modeling and analysis.

In the following, we motivate our work and derive a problem statement. Afterward, we

introduce our research goal and our three central research questions. We conclude this

section by providing a summary and an outline of the remaining thesis.

1.1. Motivation

Our world is interconnected; data is �owing everywhere. Today, more humans
2

and

software systems are connected than ever [248]. Extensive exchange and storage of data

enable modern applications in all domains, from online shopping to healthcare, from smart

home to mobility systems, from the Internet of Things (IoT) to Industry 4.0 [113]. Recent

advances like the rise of Large Language Modelss (LLMs) that are trained with trillions

of words [170, 262] show the worth of collecting, organizing, and processing data. Not

surprisingly, policy makers address this development by both supporting shared and open

data but also restricting the use of personal data and strengthening the rights of individuals.

The recent discussions about the German mobility data act for open mobility data [30] are a

prominent example of the former, while the European General Data Protection Regulation

(GDPR) [73] exempli�es the latter. Put simply, our modern society runs on data—with all

the opportunities and challenges that come with it.

A particular challenge of this intense exchange of data is Con�dentiality. Informally

speaking, if someone tells you a secret and asks you to not tell anyone, you are asked to keep

this secret con�dential. Less informal, the ISO/IEC 27000 standard de�nes con�dentiality

as the “property that information is not made available or disclosed to unauthorized

individuals, entities, or processes” [120]. The challenge of con�dentiality—and security in

1
Although I am the sole author of this dissertation and this thesis represents my research of the last four

years, I will use the plural form as it is more common in scienti�c writing.

2
In this work, we intentionally include all genders. We use gender-neutral language for inclusivity.

3

1. Introduction

general—is especially visible in large systems of systems [187] that are neither developed

nor operated by a single person or team. It becomes even more challenging when dealing

with sensitive data, e.g., regarding politics [271] or health [69]. Threats to the con�dentiality

of data are rising. For instance, the German Federal Criminal Police O�ce notes a rise in

cyber crimes, where less than 30% of incidents are solved. Comparing the 2022 and 2024

Global Automotive Cybersecurity Report [259, 260] indicates that remote attacks are on the

rise and now make up 95% of all cybersecurity incidents. Data breaches are common. Well-

known examples are the 2013 attack on Yahoo, a�ecting 3 billion accounts [108], or the

LinkedIn leak a�ecting 700 million users [175]. A lack of privacy cannot only cause costly

�nes [31] but also harm the users’ trust [271], as seen with the Cambridge Analytica scandal

[122]. Data breaches have diverse reasons like hacking, malware, sabotage, privilege abuse,

or con�guration errors [55], have a signi�cantly negative e�ect on stakeholder wealth

[83], and represent a major issue for organizations [13].

Due to the nature of con�dentiality as quality property regarding a software system’s

data, reacting is not enough, and precaution is required [75]. Here, addressing issues

earlier during the design of a software system is bene�cial because �xing issues in later

phases is usually more costly [32, 240]. Moreover, the Open Worldwide Application

Security Project (OWASP) lists insecure design as one of the top 10 security risks [79]. Here,

approaches like Security by Design and Privacy by Design ask for the early and continuous

consideration of security and privacy-related properties like con�dentiality [73, 224, 229].

In addition, the concept of phase containment requires that problems are tackled in the

same development phase in which they arose. Identifying con�dentiality violations is a

system-wide analysis task that requires more information than the source code alone can

provide, e.g., information about the system deployment or its users [233]. Thus, numerous

design time con�dentiality analyses that consider such information about the software

architecture and its context have recently been proposed [36, 193, 196, 228, 233, 264]. The

ISO/IEC/IEEE 42010 standard de�nes software architecture as “fundamental concepts or

properties of a system in its environment embodied in its elements, relationships, and

in the principles of its design and evolution” [121]. Using the software architectural

abstraction is not only common in larger software systems [207], but also, for instance, in

smaller open-source projects [171], and can address the shortcomings of considering only

a single diagram types like Data Flow Diagrams (DFDs) [241]. By combining structural,

behavioral, and deployment information of a software system, such analyses can search

for attack paths [264], check for conformance with the implementation [193] or business

processes [196], or identify con�dentiality violations even before a system is implemented

[236]. This enables software architects to assess the con�dentiality of a software system,

thereby addressing the aforementioned challenges.

However, today’s software systems are neither built nor operated in isolation. Exam-

ples like Industrial Internet of Things (IIoT) [9], Cyber-Physical Systems (CPSs) [2], and

Self-Adaptive Systems (SASs) [272] show that software has to adapt to its environment.

Moreover, with the rise of agile methods, a software’s architecture is not graved in stone

and is subject to expected but also unanticipated change. This phenomenon is known

as Uncertainty. The ISO/IEC 27000 standard describes uncertainty as “the state, even

partial, of de�ciency of information related to, understanding or knowledge of, an event,

4

1.2. Problem Statement

its consequence, or likelihood” [120]. This lack of information or knowledge can exist

both within the system and its environment [195] and degrades—or in the worst case

voids—previous analysis results [194]. Put simply, one cannot analyze what one does

not know. Software engineers face uncertainty during the development and operation of

software systems [258]. Moreover, also the design process can cause uncertainty, e.g., due

to a lack of documentation [107], or open Architectural Design Decisions (ADDs) [167].

Garlan [80] proposed more than a decade ago to include uncertainty as a �rst-class con-

cern in all phases of software development. Even earlier, in 1995, Jackson [123] attributed

such problems to the gap between the world and the machine. The naive solutions in

architecture-based con�dentiality analysis are assuming certainty [233] or denying quality

predictions—both are not expedient [258]. Thus, we have to embrace uncertainty within

the software and its environment and actively consider its potential impact on the validity

of the con�dentiality analysis results. As we apply architectural modeling and analysis to

reason about uncertainty, we are particularly interested in software-architectural uncer-

tainty. Software-architectural uncertainty describes uncertainty, that can be represented

on architectural abstraction and where early awareness enables considering its impact

on quality attributes [102]. To conclude, “there is no point in using exact methods where

there is no clarity [. . .] to which they are to be applied” [176].

1.2. Problem Statement

In this dissertation, we present an approach to uncertainty-aware con�dentiality analysis

that uses architectural abstraction. As motivated above, many approaches to architecture-

based con�dentiality analysis exist—however, they do not consider uncertainty as inherent

phenomenon of everyday software systems [36, 193, 196, 228, 233, 264]. Numerous

works present comprehensive collections of di�erent types of uncertainty sources [48,

195, 202, 255]. Examples for such uncertainties are open design decisions, e.g., regarding

deployment locations or component choices, and also environmental factors like the

behavior of users or third parties, or the validity of sensor input data. When considering

uncertainty in con�dentiality analysis, multiple challenges arise [99]. First, we need to

better understand the relation of uncertainty and con�dentiality. We require a trade-o�

between allowing uncertainty to in�uence the software architecture while still being able

to assess con�dentiality and identify violations. The solution to this challenge is non-

trivial due to the variety of uncertainty. Second, we need ways to identify and represent

uncertainty within the software architecture. This includes considering uncertainty as �rst-

class entity within the software architecture [80], but also requires approaches to identify

new uncertainty sources within the software system [81]. Here, model-based approaches

to software architecture that represent the software system in an abstract form are common

[131, 135, 207, 255]. Addressing both challenges shall enable software architects to identify

and represent uncertainty in software architectures regarding con�dentiality.

However, it is not su�cient only identifying and considering uncertainty within the soft-

ware architecture, i.e., architectural models that represent the structure, or behavior of

5

1. Introduction

software systems. To analyze con�dentiality, automated analyses are required as “detect-

ing con�dentiality issues manually is not feasible” [234]. As discussed previously, rapid

and early feedback enhances the quality and minimizes the cost [207]. Especially with

the growing size and complexity of modern software systems, manual analysis becomes

bothersome and error-prone
3
. Manually analyzing—and re-analyzing—large software

models by hand after each change and with regard to each identi�ed uncertainty is not

expedient. Thus, the third challenge is to provide accurate yet scalable analyses that

identify con�dentiality violations with respect to uncertainty. This includes assessing the

potential impact of uncertainties on the software system and, thus, on con�dentiality. We

require accurate predictions of this impact, and to relate it to con�dentiality violations.

Overestimations can introduce noise and thus degrade the analysis results, while underesti-

mations can cause missed violations and render the analysis ine�ective [71]. Furthermore,

we require scalability of what-if analyses, in order to be applicable during the software

design [143]. Last, we require such analyses to be usable by software architects [223].

Addressing this challenge shall enable software architects to reason about con�dentiality

under uncertainty based on a tool-supported modeling and analysis approach.

We summarize these challenges in our problem statement, comprising the two central

problems, also discussed in the motivation:

P1 Inspection problem: There is a lack of knowledge and awareness to identify, describe,

classify, understand, and represent uncertainty sources and their impact on con�-

dentiality using architectural abstraction. This problem hinders software architects

from inspecting uncertainty in software systems.

P2 Assessment problem: There is a lack of tool-supported design time analyses that

use the software architecture to predict the impact of uncertainty and identify

con�dentiality violations with respect to uncertainty. This problem hinders software

architects from assessing the actual con�dentiality of software systems.

Both Problems P1 and P2 are supported by the literature. While “there is growing consen-

sus on the importance of uncertainty” [115], much is yet unknown regarding the impact

of uncertainty on software systems [80]. Hezavehi et al. [115] conducted a survey on

uncertainty. They �nd a “lack of systematic approaches for managing uncertainty” [115]

and that uncertainty should already be addressed at design time. This is supported by

the work of Troya et al. [255]. They conducted a Systematic Literature Review (SLR) and

analyzed 123 papers. They state that “software models are still falling short of explicitly

representing uncertainty” [255] and that software engineers require more help “to identify

the types of uncertainty that can a�ect their application domains” [255]. Many security

problems at runtime can be traced back to earlier phases [96], and current tools seem not

to be appropriate to handle this gap in abstraction [19]. In sum, we need to research at

the intersection of software architecture, con�dentiality, and uncertainty to address this

shortcoming and to enhance the validity of state of the art con�dentiality analysis.

3
To illustrate the challenge of manual analysis, Appendix D shows the structural view of the Corona Warn
App [222], a contact tracing app that handles sensitive data such as COVID-19 test results, and that was

downloaded more than 20 million times during the COVID-19 pandemic [119].

6

1.3. Research Objective

1.3. Research Objective

Having motivated the actuality and relevance of uncertainty regarding con�dentiality

and the resulting problems of inspecting (P1) and assessing (P2) the con�dentiality of

software systems under uncertainty, we de�ne the research goal of this dissertation:

V Research Goal: De�ne a classi�cation of uncertainty sources regarding con�-

dentiality using the software architectural abstraction. Provide architecture-based

analyses that predict the impact of uncertainty sources and assist software archi-

tects in identifying con�dentiality violations with respect to uncertainty.

A classi�cation provides a terminology for understanding, communicating, and docu-

menting the object under study, i.e., uncertainty sources. It thereby also supports the

identi�cation and modeling of uncertainty sources as a �rst-class concern within the

software architecture [80]. This addresses the �rst Problem P1 regarding the inspection

of uncertainty. The analyses support software architects in understanding the criticality

of previously identi�ed uncertainty sources by propagating the e�ects in the software

architecture and thereby predicting the potential impact on the software system. Further-

more, the actual con�dentiality of the software system can be analyzed by considering

uncertainty sources within the system and its environment. This addresses the second

Problem P2 regarding the assessment of con�dentiality under uncertainty. Based on this

research goal, we derive three research questions. The �rst research question is:

ä Research Question 1: How to identify, describe and classify software-

architectural uncertainty regarding its relation to and impact on con�dentiality?

The �rst question aims to better understand the di�erent uncertainty types, their attributes,

and their impact on con�dentiality, as discussed with Problem P1. According to Shaw

[238], this is a characterization question, as we are interested in the most important

characteristics of uncertainty. The envisioned research results is of descriptive nature, a

classi�cation of uncertainty tailored to con�dentiality. The approach of �rst classifying

uncertainty has also been proposed in related work [115, 255]. Answering this question

includes understanding the location, relationship, nature and modeling possibilities of

relevant uncertainty types. Besides classifying uncertainty, this question also targets the

identi�cation of relevant uncertainty sources in the software system under study. This

represents the baseline for all further research regarding the intersection of con�dentiality

and uncertainty. Our second research question is:

ä Research Question 2: How to propagate classi�ed uncertainty sources based

on architectural modeling to predict their impact on a system’s con�dentiality?

The second question considers the propagation of uncertainty based on architectural

modeling. This relates to Problem P2 as we need to understand the impact of uncertainty

�rst in order to analyze its e�ects. This question asks for a method for analysis [238], where

the envisioned results is a technique for uncertainty impact prediction. Propagating uncer-

7

1. Introduction

tainty has been proposed in other research areas by related work [50, 115]. In architectural

models, propagation means following the potential e�ects through the software system

until no further elements of the architecture are a�ected [46, 211]. Answering this question

includes the understanding of uncertainty propagation in all relevant representations of

software architectures to make predictions of con�dentiality violations. After having

identi�ed relevant terminology to describe and classify uncertainty sources, assessing

their impact represents the obvious next step [115]. Last, our third research question is:

ä Research Question 3: How to analyze con�dentiality requirements using

architectural data �ow analysis with respect to uncertainty within the model?

This third question asks for an uncertainty-aware analysis of con�dentiality. Here, we

assume that we already have answers regarding the classi�cation and impact of uncer-

tainty, which were addressed in ä Research Question 1 and ä Research Question 2,

respectively. This question targets both Problems P1 and P2, i.e., the lack of approaches

that can model and analyze con�dentiality requirements under uncertainty using software-

architectural modeling. Similar to the previous question, we ask for a method for analysis
[238] with the envisioned research result of a new technique. Here, we build on existing

approaches to architecture-based con�dentiality analysis [233, 264] that lack uncertainty

awareness. Answering this question includes understanding how to represent uncer-

tainty in architectural models and how to make statements about con�dentiality under

uncertainty. This is especially challenging when considering multiple uncertainty sources

and their potential interactions [52]. In sum, answering these three questions satis�es

the research goal and helps software architects to develop software systems with higher

resilience against con�dentiality issues like data breaches. Although answering these

questions on their own already provides valuable insights in the nature and interaction

of con�dentiality and uncertainty, combining the results represents the most promising

approach. Here, recent work highlights the need for comprehensive end-to-end approaches

to uncertainty-aware analysis [273].

1.4. Approach

Our approach to tackle the Problems P1 and P2 and to answer the aforementioned re-

search questions is twofold. We present an analysis dualism by combining the analysis of

uncertainty with the analysis of con�dentiality to assess con�dentiality requirements for

an uncertainty-a�icted software architecture. This enables us to not only make statements

about con�dentiality in a deterministic world but to include the nondeterministic impact

of uncertainty [263]. As discussed previously, the classi�cation of uncertainty serves as the

foundation for both analyses. This approach is visualized in Figure 1.1. In the following,

we summarize the three parts of our approach that also represent the three contributions

C1, C2, and C3 of this dissertation. They will be detailed later in this thesis.

8

1.4. Approach

Confidentiality
Anlaysis (C3)

Confidentiality Requirements

with respect toStatements about
Confidentiality

Uncertainty Analysis (C2) Classified
Uncertainty (C1)

Figure 1.1.: Schematic and informal visualization of the presented approach.

Classifying Uncertainty Classifying uncertainty provides the required terminology to in-

spect and assess uncertainty regarding con�dentiality. By identifying relevant uncertainty

types and grouping uncertainty sources into classes, we bootstrap the further analysis

process. This part also includes considering the identi�cation of uncertainty sources by

addressing the lack of awareness and expert knowledge of software architects. Put simply,

we �rst have to investigate the nature of the problem before developing a solution. This

represents an answer to ä Research Question 1 and also our �rst Contribution C1.

Uncertainty Analysis We build on these �ndings on the types and attributes of uncertainty

sources that a�ect the con�dentiality of a software system to develop an analysis of

uncertainty. Here, we �rst de�ne an impact analysis to propagate uncertainty. Based

on the relations of the elements of a software architecture, we propagate the e�ects of

uncertainty sources on con�dentiality through the architectural model. Comparable to

change impact analysis [46, 110, 211], this analysis yields an impact set that predicts

the potential impact of unanticipated change, i.e., uncertainty. This does not only serve

software architects as an early prediction but also shows the e�ects of uncertainty sources

that can subsequently be used in con�dentiality analysis. Put simply, we have to analyze

uncertainty �rst before analyzing con�dentiality under uncertainty. This represents an

answer to ä Research Question 2 and also our second Contribution C2.

Confidentiality Analysis Con�dentiality analyses take con�dentiality requirements as

input to make statements about the con�dentiality of a software architecture, see Figure 1.1.

Based on our previous �ndings, we extend existing analysis approaches [36, 236] to consider

uncertainty. Here, black-box [266] and white-box [101] analysis extensions are possible.

After software architects have modeled sources of uncertainty as part of the architecture

model, the uncertainty analysis determines which con�dentiality requirements are violated

due to which uncertainties. Here, considering multiple interacting uncertainty sources is

especially challenging, as their e�ects can add up or cancel each other out [50, 52]. This

represents an answer to ä Research Question 3 and also our third Contribution C3.

9

1. Introduction

As discussed previously, all contributions can be used independently or in conjunction.

We also provide tooling that supports the modeling and the analysis based on established

frameworks [205, 207]. In this thesis, we motivate, present, and evaluate all contributions

independently. We transparently enumerate assumptions and limitations. Last, we provide

a comprehensive data set including our tooling and all raw evaluation data [98].

1.5. Outline and Reading Paths

This dissertation consists of four parts: The prolog, the contributions, their validation,

and the epilog. The remainder of the prolog comprises the presentation of foundations in

Chapter 2 and the introduction of a running example in Chapter 3. This running example

does not only serve to exemplify the scienti�c problems addressed in this thesis, but will

also be used intensively throughout the thesis. Afterward, we present the contributions

of this dissertation. We start with an overview that continues the introduction of our

approach in Chapter 4. Then, we introduce our classi�cation of uncertainty (C1) in

Chapter 5, the uncertainty impact analysis (C2) in Chapter 6, and four uncertainty-aware

con�dentiality analysis approaches (C3) in Chapter 7. We show the scenarios used in the

validation of the contributions in Chapter 8 and present our comprehensive evaluation

thereafter in Chapter 9. Last, the epilog concludes this thesis with an overview of related

work in Chapter 10 and a summary and outlook on future work in Chapter 11. We would

also like to point out the additional information in the Appendix and in the data set [98].

There are multiple ways to read this dissertation:

Beginner readers, who are not interested in the technical details of the contributions

but want to understand the bigger picture, continue with reading the foundations

in Chapter 2. Afterward, every chapter ends with a section called In Simpler Words.
There, we explain the most important concepts and �ndings of each chapter without

using scienti�c terminology but with reference to everyday life. For your convenience,

this means Sections 1.7, 2.7, 3.4, 4.6, 5.10, 6.10, 7.9, 8.9, 9.6, 10.5, and 11.4
4
.

Expert readers, who want to gain an overview of our insights, will �nd gray high-

lighted boxes titled Findings throughout the thesis. A concise yet technical overview

of the contributions is given in Chapter 4, and the conclusion in Chapter 11 provides

a summary. If the information provided there is not su�cient, the contribution

chapters 5, 6, and 7 come with their own introduction and summary sections.

Particularly interested readers are welcome to read the entire work in one piece.

Furthermore, we recommend suitable basic literature in Chapter 2 and provide all

relevant references to own publications at the beginning of each chapter.

4
This dissertation is meant to be read digitally. We make extensive use of references, e.g., between chapters

or enumerable items like research questions, contributions, and evaluation goals. We recommend using a

shortcut to jump back from following a reference. Furthermore, all paragraphs, �gures, and tables are

optimized for the DIN A4 version of this dissertation. If you happen to have the DIN A5 or the book

version at hand, you can �nd the other versions until the link expires at https://thesis.abunai.dev/.

10

https://thesis.abunai.dev/

1.6. Summary and Outlook

1.6. Summary and Outlook

In this chapter, we introduced the topic of this thesis. First, we motivated the actuality and

relevance of con�dentiality, uncertainty, and software architecture. Without considering

uncertainty as a �rst-class concern within the software architecture, the validity of state-

ments about con�dentiality can be degraded or completely voided [99]. Afterward, we

presented three challenges of architecture-based and uncertainty-aware con�dentiality

analysis. They revolve around understanding the relationship between uncertainty and

con�dentiality, representing uncertainty in architectural models, and providing automated

analyses. The challenges of representing and analyzing uncertainty in the software archi-

tecture are also supported by the literature [115, 255]. We summarized these challenges in

our problem statement as inspection problem (P1) and assessment problem (P2).

Based on these problems, we presented our research goal and three research questions

that map to the three Contributions C1 – C3 of this dissertation. First, we de�ne a novel

classi�cation of uncertainty regarding con�dentiality. Second, we use this classi�cation

in uncertainty impact analysis, thereby propagating the e�ects of uncertainty within the

software architecture and calculating the potential impact. Third, we include the impact

of uncertainty within con�dentiality analysis to identify con�dentiality violations with

respect to uncertainty. We summarized the relations of these research questions and our

contributions by introducing this dissertation’s approach. Last, we presented the outline

and the intended reading paths for the di�erent types of readers of this thesis.

Next, in # Chapter 2: Foundations, we explain the foundations required for under-

standing this thesis, e.g., Directed Acyclic Graphs (DAGs), or Model-Driven Software

Development (MDSD). Afterward, we introduce the running example of this thesis in

#Chapter 3: Running Example. Both chapters also help to understand the context and

the general assumptions of this dissertation. In# Chapter 4: Overview, we continue the

presentation of our approach by relating common activities in the procedure of handling

uncertainty in software architectures to our contributions and our tool support.

1.7. In Simpler Words

Our world runs on data. Think of social media, online shopping, advertisement, smart

home, or arti�cial intelligence—all of these systems require large amounts of data to

provide their functionality. In this dissertation, we focus on the con�dentiality of this data.

Con�dentiality demands that data is not shown to unauthorized persons or organizations.

It is a quality property of software systems and is related to security and privacy. In this

dissertation, we research how to analyze the con�dentiality of software systems while

considering uncertainty. Put simply, uncertainty is the lack of knowledge, i.e., not knowing

something for sure, e.g., because an engineer cannot assess environmental conditions or

the behavior of third parties.

11

1. Introduction

We present an approach to better understand the potential impact of uncertainty on

con�dentiality by using a high-level view of the software system, i.e., software architec-

ture, the big picture of a software system. Therefore, we �rst have to better understand

uncertainty—like you need to understand the rules of a board game to be able to play

better. Afterward, we build an analysis that propagates uncertainty within a software

architecture to better understand its impact. This is comparable to introducing a drop

of dye into a stream of water and then observing the coloration. In the end, we enable

software architects to identify con�dentiality violations early and to build better software

systems that protect the data of their users.

12

2. Foundations

In this chapter, we explain the foundations of this thesis. As stated in the title, the topic

of this thesis revolves around software architecture, con�dentiality, and uncertainty. We

present common terminology, approaches, and underlying concepts that will be used

throughout this thesis. For every section, we also provide references for further reading.

The remainder of this chapter is structured as follows: First, we introduce the central

concerns of this thesis, i.e., uncertainty, and con�dentiality. Afterward, we explain the

concept of model-driven development and how we use it in architectural modeling and

analysis. Last, we present the foundations of modeling data �ows of software systems.

2.1. Uncertainty

Uncertainty has many de�nitions: Walker et al. [263] refer to uncertainty as “being any

departure from the unachievable ideal of complete determinism” [263]. Weyns [272]

de�nes uncertainty as “any deviation of deterministic knowledge that may reduce the

con�dence of adaptation decisions made based on the knowledge” [272]. In architecture

evaluation, Sobhy et al. [243] de�ne it as “the lack of full knowledge about the outcomes of

deploying the architecture options” [243]. Uncertainty is also related to doubt, error [128],

or risk [120]. In the ISO/IEC 27000 standard, uncertainty is de�ned as “the state, even

partial, of de�ciency of information related to, understanding or knowledge of, an event, its

consequence, or likelihood” [120]. The current version of the Object Management Group

(OMG) Precise Semantics for Uncertainty Modeling (PSUM) standard refers to Zhang et al.

[278], describing uncertainty as “the lack of con�dence (i.e., knowledge) about the timing

and nature of inputs, the state of a system, a future outcome, as well as other relevant

factors” [184]. In software design, the cone of uncertainty describes the lack of knowledge

about a software system in early development phases [167]. Here, uncertainty about open

design decisions can impact cost estimation.

These de�nitions share four common aspects. First, they refer to a lack of information

regarding a system. Second, they mention sources of uncertainty within the system or its

environment [2]. Third, they name consequences of uncertainty, e.g., increased risk, which

may impact the quality of the system. Fourth, the majority of these de�nitions consider

even small changes in certainty, using terms like “any deviation”, “full knowledge”, or

“unachievable ideal”, highlighting how omnipresent or ubiquitous uncertainty is. For the

scope of this thesis, we adopt these four aspects and refer to uncertainty as the commonly

occurring lack of information that can negatively impact the quality of a software system.

13

2. Foundations

Available Categories Available Options

Location: Describes

where uncertainty

originates from or

where it manifests it-

self within the system

or model [41, 162, 184,

195, 255, 263]

Context: system boundaries [195, 263], user input [41], execu-

tion context [162, 184], environment [184]; Model structural:
existence of elements [255], elements and their relationship

[195, 263], structural di�erences [162], components and their

properties [41]; Model technical: software and hardware

[263]; Input: input types [263], input values [195], measure-

ment deviation [184, 255], geographical location [184], time

[184]; Parameters: parameter calibration [195, 263]; System
behavior: actual behavior [41], including parameters and ac-

tions [255]; Belief: uncertain statements about system and

environment [255]

Level: Describes

how much is known

about the uncertain

in�uence and how the

uncertainty can be

described [11, 41, 162,

184, 195, 263]

Statistical: Statistical data available [162, 263]; Scenario: Pos-

sible scenarios available without statistical data [11, 162, 263];

Recognized ignorance: Awareness of uncertainty, but cannot

be further described [263], can be supported by evidence, e.g.,

empirical evidence, or theorem proving results [184]; Total
ignorance: Lack of awareness of uncertainty [263]; Orders
of Uncertainty: No uncertainty (0th), known uncertainty

(1st), lack of awareness, i.e., unknown unknowns (2nd), lack

of awareness and process (3rd), meta-uncertainty (4th) [11,

41, 195]; Perspective: Subjective, based on observation, or

objective, independent of any observing agency [184]

Table 2.1.: Categories and options to classify the location and level of uncertainty.

Existing literature proposes di�erent approaches to deal with uncertainty, involving

activities like identi�cation, management, and mitigation [115, 184, 194, 195, 243, 272].

Another common approach to uncertainty is its classi�cation, resulting in a multitude

of taxonomies [11, 41, 71, 115, 162, 184, 195, 202, 255, 263]. These taxonomies describe

many dimensions that shall help to better understand uncertainty, e.g., by distinguishing

between sources of uncertainty or classifying the size of the knowledge gap. Examples of

such uncertainties are the lack of knowledge of the structure of a software system, the

behavior of external systems, or a sensor’s input value. At the time of writing, uncertainty

represents a commonly researched topic with novel �ndings and challenges ahead [273].

In the following, we give an overview of the current state of classifying and describing

uncertainty. We investigated existing taxonomies [11, 41, 71, 162, 195, 202, 263], as well as

recent Systematic Literature Reviews (SLRs) and surveys on uncertainty [115, 255] and the

most recent version of the OMG PSUM standard [184], which is in beta status. To unify

the terminology, we only use the terms classi�cation, category, and option.

Table 2.1 shows the �rst two available categories regarding the location and the level and

all available options. Uncertainty is often described with its location which describes where

the uncertainty manifests itself. Many classi�cations provide options like context, input, or

14

2.1. Uncertainty

Available Categories Available Options

Nature: Describes

the essence and char-

acter of the uncer-

tainty [41, 162, 184,

195, 255, 263]

Aleatory: Uncertainty due to inherent variability or random-

ness [41, 162, 184, 195, 255, 263]; Epistemic: Uncertainty due to

a lack of knowledge [41, 162, 184, 195, 255, 263], can be further

described as indeterminacy, e.g., due to insu�cient resolution,

or missing information [184]

Manageability: De-

scribes whether the

uncertainty can be re-

duced [71, 184, 263]

Reducible: Uncertainty can be fully reduced after acknowl-

edgement [71, 184, 263]; Partially reducible: No full certainty,

but uncertainty can be reduced [184]; Irreducible: Uncertainty

cannot be further reduced at this point in time [71, 184, 263]

Emerging time: De-

scribes at which state

of the software devel-

opment uncertainty

arises [115, 162, 184,

195, 202, 255]

Requirements time: As requirements are de�ned [202, 255];

Design time: As the software system is designed [115, 162, 202,

255]; Veri�cation: At veri�cation of software models [255];

Testing: During software testing [115, 255]; Implementation:

As the software gets implemented [255]; Run time: During

software execution [115, 162, 195, 202, 255], can be described

using patterns like periodic, persistent, or random [184]

Table 2.2.: Categories and options to classify the nature, manageability, and emerging time of uncertainty.

behavior. The level category is used to describe how much is known about the uncertainty.

Here, three di�erent approaches exist. Some classi�cations de�ne the level based on the

description of uncertainty, e.g., by using statistical means, or scenarios [162]. Others

refer to the orders of uncertainty [11] and the distinction between known unknowns and

unknown unknowns. However, even in this order, di�erent nuances exist, e.g., recognized

ignorance compared with statistical data. Last, the level can be described based on the

perspective being subjective or objective [184].

Table 2.2 shows the categories regarding the nature, manageability, and emerging time.
The nature of uncertainty with the two options aleatory and epistemic represents the most

uniformly used category among all classi�cations. However, this category is questioned

[71, 137] as it depends on the point of view and is often not clearly distinguishable. Thus,

some use the category manageability that focuses on reducibility. The distinction between

reducible, partially reducible and irreducible is also supported by the PSUM standard. The

category emerging time describes the time when uncertainty arises. The options re�ect

the common phases of software engineering from requirements time to run time.

Table 2.3 shows the categories regarding the impact on quality, relationship of uncertainty,

and uncertainty sources. The impact on quality is important as not all uncertainties

a�ect a system’s quality. The relationship of uncertainty represents in�uences of one

uncertainty source to another. Last, several publications list sources of uncertainty as not

all taxonomies directly aim at classifying sources. We list some examples here and also

provide a comprehensive catalog of sources as part of the thesis’ data set [98].

15

2. Foundations

Available Categories Available Options

Impact on Quality:

Describes how uncer-

tainty a�ects quality

properties [115, 184]

Performance: Impact on performance [115]; Resources: Im-

pact on resource consumption [115]; Safety: Impact on a

system’s safety [115]; Risk: General e�ect of uncertainty on

system objectives [184]

Relationship: The re-

lation between uncer-

tainties [184, 202]

Directed: Directed relationship or in�uences between un-

certainties [202]; Related: Unspeci�ed relationship between

uncertainties [202]; E�ect: An uncertainty can be caused by

another uncertainty [184]

Source: Potential

sources of uncertainty

[71, 162, 184, 195, 202]

Several publications contain comprehensive lists of uncer-

tainty sources, e.g., human in the loop [195], abstraction [195],

missing requirements [202], inadequate design [202], . . .

Table 2.3.: Categories and options to classify the impact on quality, relationship, and source of uncertainty.

Further reading: For a comprehensive introduction to the topic of uncer-

tainty in Self-Adaptive Systems (SASs), we recommend Weyns [272]. A more

recent overview of the research community is given by Hezavehi et al. [115].

2.2. Confidentiality

Con�dentiality is de�ned as the “property that information is not made available or dis-

closed to unauthorized individuals, entities, or processes” [120]. It is named together with

integrity and availability as part of information security [120]. It is also often referred to in

the context of privacy [38, 39, 224, 252]. Con�dentiality requirements specify what should

be accessible by whom. Properties of such requirements are, for instance, stakeholders,

the protected data, and the purpose [189]. Con�dentiality is part of legal regulations

such as the General Data Protection Regulation (GDPR) [73]. Exemplary con�dentiality

requirements are the protection of personal information or payment data [36].

Common mechanisms to ensure con�dentiality are access control and data encryption

[230]. Access control provides “means to ensure that access to assets is authorized and

restricted based on business and security requirements” [120]. For instance, Role Based

Access Control (RBAC) uses the member roles of an organization to specify permissions.

An example is that only members with the administrative role shall be able to directly

access a database. Attribute-Based Access Control (ABAC) extends this and supports the

evaluation of complex rules comprising di�erent attributes [117]. The eXtensible Access

Control Markup Language (XACML) extends the Extensible Markup Language (XML)

and represents an open industry standard to formulate and enforce ABAC policies [182].

Encryption is the mapping of a readable plain text to an unreadable cipher text, using an

encryption algorithm and a key [18]. Without knowing the key, the plain text shall be

hard or impossible to determine. In sum, both mechanisms help to prevent the access of

unauthorized entities to protected data and thus help to ensure con�dentiality.

16

2.3. Model-Driven Software Development

Further reading: Schumacher et al. [230] provides a comprehensive introduc-

tion to security in the development of software systems, covering an overview of

the �eld of security and a variety of security patterns.

2.3. Model-Driven So�ware Development

Model-Driven Software Development (MDSD) is a concept where models play a central

role in the development of software systems [246]. Nowadays, using models in software

development is common, e.g., as shown by the popularity of the Uni�ed Modeling Language

(UML). However, compared to only using models for documentation purposes, model-

driven approaches give models an equivalent or higher importance than code. This includes

techniques like tailored modeling languages, model transformations, and code generation.

This thesis uses design time models for analysis purposes, which is related to MDSD.

Stachowiak [245] names three central properties of models: representation, abstraction,

and pragmatics. First, a model represents the modeled entity, e.g., a UML diagram can

represent the structure or behavior of a real software system. Second, a model abstracts

from the modeled entity, e.g., a UML activity diagram does not represent every single

line of code. Third, a model has pragmatics, it follows a purpose. The models we use are

generally about representing a software system in a simpli�ed yet analyzable way.

One of the most important aspects of MDSD is meta modeling. A meta model describes

the structure of a model, including available elements, their relationship, and modeling

constraints [246]. Put simply, a meta model states the rules on how a model has to be

constructed. An example is the UML providing many diagram types like activity diagrams,

M3: Meta meta model

instance of

M2: Meta model

M1: Model

M0: Instance

instance of

instance of

describes

describes

describes

e.g., Ecore, MOF

e.g., UML, DFD, PCM

e.g., UML diagram of
the running example

e.g., a running
soware system

instance of describes

Figure 2.1.: The four meta levels with examples from our domain, based on Stahl et al. [246].

17

2. Foundations

class diagrams, or deployment diagrams. The meta model itself can be described following

the same concept using a meta meta model, which states the rules of the meta model.

Common meta meta models are the OMG Meta Object Facility (MOF) [188] and Ecore

from the Eclipse Modeling Framework (EMF) [249]. Due to the high level of abstraction,

these models can describe themselves. This is visualized in Figure 2.1. There, we depict the

description and instance relation of all meta levels and show examples from the domain of

this thesis, e.g., Ecore, the UML meta model, and UML models. This includes the instance

level, representing an entity of the real world, e.g., the modeled software system.

Further reading: We recommend the comprehensive introduction to Model-

Driven Software Development (MDSD) by Stahl et al. [246].

2.4. So�ware Architecture

As stated in the title of this thesis, this work uses the architectural representation of

software systems as a baseline. Software architecture comprises the “fundamental concepts

or properties of a system in its environment embodied in its elements, relationships, and

in the principles of its design and evolution” [121], according to the ISO/IEC/IEEE 42010

standard. Software architecture can be also interpreted as a set of Architectural Design

Decisions (ADDs) [124, 125]. Another approach to software architecture is to describe it

by its views, e.g., a logical view, or a development view [149]. As discussed in the previous

section, we used model-driven techniques. Here, Architectural Description Languages

(ADLs) provide “means of expression, with syntax and semantics, consisting of a set of

representations, conventions, and associated rules intended to be used to describe an

architecture” [121]. As a meta model for this work, we use the Palladio Component Model

(PCM) [207], which we describe in more detail in the following.

The Palladio approach [207] enables modeling, simulating, and analyzing software ar-

chitectures regarding quality dimensions like performance, reliability, or maintainability.

Besides comprehensive tool support [205], the approach provides a meta model for soft-

ware architecture, the PCM [206, 207]. Palladio builds on the concept of Component-based

Software Engineering (CBSE), which divides software architectures into reusable and com-

posable components. The PCM meta model has been used previously in security analysis,

e.g., regarding con�dentiality [233], access control analysis [196], or attacker propagation

[264]. Here, the shared underlying meta model simpli�es the reuse of architectural models,

which minimizes costs. The PCM is partitioned into �ve submodels:

• The Component Repository Model contains components and interfaces. The compo-

nents’ behavior is described using Service E�ect Speci�cations (SEFFs) that abstract

from the control �ow. Components can be composed both vertically, and horizontally.

The repository belongs to the structural viewpoint. The inter-component behavior

description with SEFFs belongs to the behavioral viewpoint. For instance, compo-

nents could be the user management or database of an online learning platform.

18

2.5. Data Flow Diagrams

• The System Model describes the assembly, i.e., the wiring of the components of

the Component Repository Model. This belongs to the structural viewpoint. For

instance, the previously introduced user management component could be wired to

the database component for the persistence of user data.

• The Execution Environment Model de�nes hardware resources and the network.

These resources represent the deployment locations of components. For instance,

resources can be an on-premise server or a cloud service.

• The Component Allocation Model describes the deployment of assembly contexts

that represent components from the system model, i.e., shows the allocation of the

components in use. This model belongs to the deployment viewpoint. For instance,

the database component can be deployed on-premise.

• The Usage Model speci�es the user interaction with the software system. By modeling

expected calls to the components, usage scenarios can be expressed. For instance,

users interact with the user management when registering on the online platform.

In sum, the PCM enables the system-independent modeling of components and their

behavior and of the executing environment. Furthermore, engineers describe the system-

speci�c assembly context and the allocation context of the components, and also the usage

context of the software system. Based on these submodels, a multitude of simulations can

be executed in the Palladio Bench [205]. For instance, using the information on expected

usage scenarios together with the allocation of components, performance bottlenecks

can be identi�ed. For the sake of this thesis, we only focus on con�dentiality. Thus, we

build on the PCM as comprehensive ADL without relating to other analysis approaches of

di�erent quality dimensions like performance and reliability.

We choose the PCM as foundation of our work due to its maturity, wide adoption, and

reception in the community [146]. However, we want to stress that the contributions

presented in this dissertation can also be realized with other ADLs, e.g., the UML. Here,

using the PCM does not represent a “vendor lock-in”, as its meta models are related to other

well-known diagram types like UML component diagrams or UML activity diagrams.

Further reading: Reussner et al. [207] present the Palladio approach in detail.

Additionally, they provide an overview of software architecture as a discipline

with a focus on architectural modeling and analysis.

2.5. Data Flow Diagrams

DeMarco [64] introduces Data Flow Diagrams (DFDs) to represent software systems “from

the point of view of the data” [64]. By focusing on data �ows instead of control �ows, the

data-oriented analysis of issues within software systems is simpli�ed. Regarding security

analysis, DFDs represent a simple yet powerful representation of software systems [226].

They are used both for documentation and discussion [226, 241], and also automated

analysis [6, 24, 53, 236, 256, 257]. Especially regarding con�dentiality, the use of DFDs is

19

2. Foundations

expedient, as “problems tend to follow the data �ow, not the control �ow” [239]. In the

following, we brie�y introduce the original syntax of DFDs [64]. Afterward, we introduce

the uni�ed modeling primitives for DFDs [235], used throughout this thesis, and the

representation of DFDs as directed graphs [15, 66].

Further reading: For a historically relevant, original de�nition of Data Flow

Diagrams (DFDs), we refer to DeMarco [64]. To learn more about the fundamen-

tals, see the introduction to graph theory by Diestel [66].

2.5.1. Elements of Data Flow Diagrams

In describing the conventions of data �ow diagrams, DeMarco [64] states that “the data

�ow diagram shows �ow of data, not of control” [64]. Resulting from this, loops are

excluded from DFDs as they represent control �ow, of which “the data are unaware of”

[64]. The graphical notation of DFDs comprises four elements:

• Data sources and sinks are represented by boxes. They depict an entity like a person

or an organization that is outside of the context of the system under study. Examples

are the user of a software system or an external data base.

• Processes are represented by circles. They depict the processing or transformation

of data within the scope of the system under study. Examples are the processing of

user input or the calculation of results.

• Files are represented by straight line. They depict internal and temporary repositories

of data within the scope of the system under study. An example is the temporary

storage of intermediate data processing results.

• Data �ows are represented by named arrows. They represent data paths or pipelines

of data within the software system and connect all other elements. Multiple arrows

between two elements are possible if the data �ow has more than one purpose or

type. Examples are the �ow of data from a source or the �ow between two processes.

Figure 2.2 shows the DFD of a simpli�ed online shop scenario. The User represents a data

source, the Data base represents a data sink, the Shipping fees represent internal storage,

and the internal processing represents processes. All elements are connected by named

arrows, i.e., data �ows. The user input comprising an order from the shop is �rst processed.

user input
User

Shipping fees

order
Process order

total cost
Calculate sum Data base

Figure 2.2.: A Data Flow Diagram (DFD) showing all four element types in a simpli�ed online shop scenario.

20

2.5. Data Flow Diagrams

Assignment

in out

BehaviorLabel

Pin

src dst

src

dst
Flow

Node

property

Process

External

Store

Figure 2.3.: Meta model of uni�ed modeling primitives, based on Seifermann et al. [235].

Afterward, the total cost of the order is calculated, which includes applying the correct

shipping fee. The result is stored in the data base. This �gure shows several conventions of

DeMarco [64], e.g., the arrows of �les have no description as their purpose is unambiguous.

Inspired by related work [233], we use two horizontal lines to represent �les throughout

this thesis to increase readability.

2.5.2. Unified Modeling Primitives

The DFD syntax is simple and easy to understand. However, this simplicity causes ambi-

guity, especially regarding security analysis. Sion et al. [241] name several weaknesses of

DFDs for security-related analysis: They lack the means to represent security concepts,

lack precision in describing the details of �owing data, and do not express deployment

information. To address this, Seifermann et al. [235] present the uni�ed modeling primitives
of DFDs by combining multiple notations of security-focussed DFD notations from other

work [234, 256]. We use these primitives in this thesis to represent DFDs.

Figure 2.3 shows the meta model of the uni�ed modeling primitives. It comprises the

element types known from DFDs by DeMarco [64], i.e., External nodes, Processes, and

internal Stores. These Nodes are connected by Flows. To reduce the ambiguity of data

�ows, Pins are used to represent the incoming and outgoing data of a Node. Alternative

Pins can be used to represent required inputs, e.g., the calculation of the sum in Figure 2.2

requires both the order and the shipping fees. Multiple ingoing �ows to a single Pin, or

multiple outgoing �ows from a single Pin represent alternative �ows. Pins are used to

decouple the Behavior from a Node. A Behavior describes the data processing of a node

using Assignments. Assignments alter Labels that represent characteristics of �owing data,

e.g., whether data is encrypted or personal. For instance, the order processing in Figure 2.2

removes all personal information of the user and only forwards the cost of purchased

items, which can be represented using an Assignment within the Behavior of the Process.
This addresses the shortcoming regarding behavior descriptions [241]. Last, Labels are

used to describe the properties of Nodes, e.g., their deployment.

Using the uni�ed modeling primitives, we can analyze transitive data �ows by tracing

Labels in DFDs. The procedure of following Labels through the system is called label
propagation [233, 235, 236]. To identify con�dentiality violations, the propagated Labels

21

2. Foundations

can be compared to the property Labels of a node. This enables the speci�cation of

con�dentiality requirements as data �ow constraints [100, 105]. We reuse conventions

for the behavior and constraint description, e.g., the two-headed arrow� represents the

forwarding of data in a DFD. The crossed-out arrow 9 is used to represent a forbidden

data �ow. For instance, the data �ow constraint of personal data that shall never �ow to

the data base can be written using Labels as personal 9 database. For a more detailed

explanation, see the work of Seifermann [233], and Boltz and Hahner et. al [36].

2.5.3. Directed Acyclic Graphs

As stated previously, DFDs use arrows to depict the �ow of data. These arrows represent

directed connections between nodes, usually without forming cycles [64]. Thus, DFDs can

be interpreted as graphs where vertices are represented by processes, �les, data sources,

or data stinks. The data �ows form the edges of the graph. In graph theory [15, 66], such

graphs are referred to as a Directed Acyclic Graph (DAG).

A DAG is a pair� = (+ , �) of sets, where+ represents the vertices and � ⊆ [+]2 represents

the edges. We assume that both represent nonempty and �nite sets and+ ∩� = ∅. We write

|� | to represent the order of� , i.e., the number of its vertices. Furthermore, we require the

graph to be directed and free of cycles. Note that control �ow graphs with cycles can be

transformed into acyclic DFDs [148]. As we use DAGs only to represent data �ows, we do

not use the usual notation of an edge that concatenates its vertices name. Instead of writing

ab to depict an edge from a to b, we use the �ow syntax of a→ b. Besides representing a sim-

ple DFD, Figure 2.2 also satis�es the requirements of a DAG. All data �ows are directed and

there are no cycles with + = {User, Process order,Calculate sum, Shipping fees,Data base}
and, for instance, {User → Process order, Process order → Calculate sum} ⊂ �.

In DAGs, data �ows can be represented as strict partial ordering, being irre�exive, asym-

metric, and transitive [141]. For all 0, 1, 2 ∈ + , this means that ¬(0 < 0), i.e., there is no

data �ow of a vertex to itself. Additionally, if 0 < 1, i.e., if there is a �ow from a to b,

then ¬(1 < 0), i.e., there is no �ow back, which would create a cycle. Last, data �ows are

transitive, i.e., if 0 < 1 and 1 < 2 , then trivially also 0 < 2 . Figure 2.2 exempli�es all three

properties: It is irre�exive and asymmetric, without any cyclic �ows or �ows of data from

a vertex to itself. Last, it shows transitive �ows, e.g., the �ow from the User to the Data
base. In sum, DAGs are a simple yet powerful notation to represent DFDs.

2.6. Summary and Outlook

In this chapter, we explained the most relevant foundations of this thesis. This includes the

topics of this thesis, i.e., con�dentiality, uncertainty, and software architecture. We brie�y

repeat the central de�nitions based on ISO/IEC 27000 and ISO/IEC/IEEE 42010. Uncertainty

is de�ned as “the state, even partial, of de�ciency of information related to, understanding

or knowledge of, an event, its consequence, or likelihood” [120]. Con�dentiality is de�ned

22

2.7. In Simpler Words

as the “property that information is not made available or disclosed to unauthorized

individuals, entities, or processes” [120]. Last, software architecture can be de�ned as

“fundamental concepts or properties of a system in its environment embodied in its

elements, relationships, and in the principles of its design and evolution” [121].

Furthermore, we introduced model-driven approaches to software engineering as we build

on model-based techniques in our contributions. Last, we also discussed multiple DFD

representations: The original de�nition of DeMarco [64], the uni�ed modeling primitives

by Seifermann et al. [235], and the representation of DFDs as DAGs. We use all three

notations throughout this thesis. The example of an online shop, brie�y introduced in this

chapter, is used as a running example in#Chapter 3: Running Example. Afterward, in

Chapter 4: Overview, we give an overview of the thesis and its contributions, which

are based on the aforementioned foundations.

2.7. In Simpler Words

Our research builds on the work of others. We build on many �ndings of other researchers

from the last decades. The most important foundations of our work are presented in this

chapter. First, we introduce the topic of uncertainty. You can think of uncertainty as

the opposite of certainty, i.e., the lack of knowledge about something. For instance, you

may not know what you are going to eat tomorrow—you are unsure, or uncertain. Next,

we introduce con�dentiality. Put simply, if I tell you a secret and ask you not to tell it

to anyone else, I ask for con�dentiality. This con�dentiality is especially important in

software systems that handle large amounts of sensitive data.

We also introduce model-driven approaches to software development and software archi-

tecture, known as Model-Driven Software Development (MDSD). Models can be thought

of as diagrams of software systems that show, for example, the structure of a system. In

this thesis, these diagrams are central to our way of thinking about software systems.

We thereby focus on the software architecture, i.e., a higher abstraction of the system

under study. We are not interested in every single line of code but we focus on the bigger

questions of how the system is constructed and deployed.

Last, we discuss Data Flow Diagrams (DFDs), as we are especially interested in the con-

�dentiality of data. Here, we present di�erent notations of such diagrams that di�er in

their nature and complexity. For instance, we refer to the original de�nition by DeMarco

[64] from 1979, and a more recent notation by Seifermann et al. [235]. We also explain

a more formal way to draw such diagrams, called Directed Acyclic Graphs (DAGs). It is

important for us to have appropriate means to express data �ows, as the remainder of this

thesis will build on them.

23

3. Running Example

In this chapter, we introduce the running example that will be used throughout this thesis

to illustrate our �ndings. The running example is based on internationally operating

e-commerce businesses known from everyday life. To become easy to understand, we

simplify the software architecture compared to real-world applications. Nevertheless,

the con�dentiality requirements and potential uncertainty sources can be transferred to

large-scale systems. The simpli�ed Online Shop running example has been used in various

publications [101, 102, 105]. Similar case studies exist, e.g., in the context of the Common

Component Modeling Example, CoCoME [203].

In the following, we shortly introduce the online shop software architecture, its intended

functionality, and con�dentiality requirements. Then, we illustrate the variety of uncer-

tainty and problems that can be caused by this uncertainty regarding con�dentiality.

� Literature: This chapter is based on the following (co-) authored publications:

[ECSA-C 2021], [IEEE/ACM SEAMS 2023], [ACM/IEEE MODELS-C 2024]

Database ServiceOnline Shop

? U2: Data Processing?U1: User Input

Customer

Cloud ServiceOn Premise Server

?
«deploy»

?U4: Provider Trustworthiness

U3: Deployment
«deploy»

Figure 3.1.: Combined component and deployment diagram showing the software architecture of the online

shop running example with annotated uncertainty sources depicted as circled question marks.

25

3. Running Example

3.1. Online Shop So�ware Architecture

The software architecture is depicted in Figure 3.1. It consists of two components and two

deployment locations. The Online Shop component serves as the interface for customers

while the Database Service is used to persist information about customers, purchases,

and the shop’s inventory. Both components are connected through an interface which

is provided by the Database Service. The Online Shop component is deployed on an On
Premise Server while the Database Service can either be deployed locally on the same server

or alternatively on a Cloud Service for better scalability.

Customers interact directly with the Online Shop component. The running example

comprises three usage scenarios. First, customers input search details and request to

view available items. Second, they select an item to purchase and enter payment and

shipping details. In both scenarios, the input is processed in the Online Shop component

�rst. Afterward, data is exchanged with the database, e.g., to query the inventory, or to

store the purchase history. The third usage scenario considers users that request static

information like support contact addresses. This information is provided directly by the

Online Shop component without any communication with the database.

We consider two types of data in the running example: The online shop’s public informa-

tion, and the user’s private purchase details. The former is publicly available and does not

have to be protected—on the contrary, the online shop bene�ts from the public availability

of this information. The latter can be classi�ed as personal or sensitive information for

which con�dentiality requirements apply. Public availability of the customers’ shopping

and payment details would harm their privacy and might cause fraud or theft. The Euro-

pean General Data Protection Regulation (GDPR) demands that personal data of European

citizens is only allowed to be stored and processed on European servers or on servers

which ensure “an adequate level of protection” [73, Art. 45]. In the following, we assume

that the online shop is operated in Europe, which implies that data processing on the On
Premise Server complies with this con�dentiality requirement. Depending on the cloud’s

server location and the trustworthiness of the provider, the storage on the Cloud Service
might violate this requirement. Additional con�dentiality requirements can include the

user input, which has to be neither erroneous nor malicious, and also has to be validated

and encrypted as part of the Online Shop processing.

We illustrate the behavior and data �ows of the running example as Data Flow Diagram

(DFD) in Figure 3.2. In addition to the DFD elements introduced in Section 2.5, we depict the

users and components using gray boxes [233]. The upper half of the diagram represents

the �ow of query requests from the user via the online shop to the database and the

response containing available items from the database to the user. Additionally, it shows

the request for support information. In our simpli�ed example, both data �ows do not

contain sensitive information. Thus, no con�dentiality requirements apply. In the lower

half, the customer purchases an item. The purchase is processed on the online shop and

then stored in the database. This data �ow is subject to con�dentiality requirements.

26

3.2. Exemplary Uncertainty Sources

Customer

input search
details

process request query data

return data display items

Customer Online Shop Database Service

purchase item process purchase store data

Database

request support
contact

return contact

Figure 3.2.: Exemplary Data Flow Diagram (DFD) illustrating possible data �ows through the online shop

running example. The gray boxes indicate the user and components of the software architecture.

3.2. Exemplary Uncertainty Sources

As described previously in Section 2.1, uncertainty sources can exist within the software

system and its environment [2]. In Figure 3.1 and in the following, we represent uncertainty

sources in diagrams as circled question marks. We introduce four exemplary yet common

sources of uncertainty to our running example:

U1 The users’ input is a source of uncertainty. Although certain behavior regarding

entered information can be expected already at design time, it cannot be guaranteed.

U2 The data processing is still uncertain. This can be the case due to an open design

decision or due to the black box nature of a third-party o�-the-shelf component.

U3 The component deployment is an uncertainty source. This can be caused by missing

design decisions or dynamic recon�guration at runtime, e.g., due to load balancing.

U4 The trustworthiness of a resource provider, which is used as a deployment location

for a component or service, is uncertain and can only be assured, e.g., with policies.

We annotate the �rst Uncertainty U1 to the customer using the online shop. Humans are

a common uncertainty source within the literature, often referred to as human in the loop
[195, 202]. Although the user input is uncertain, we can assume di�erent input classes,

e.g., valid input as expected, erroneous input due to human failure, or malicious input.

The second uncertainty source U2 considering the data processing is annotated to the

Online Shop component and its connection to the Database Service. This could be uncertain

due to the black-box principle of software components [207] or due to a yet-to-be-de�ned

design decision [159]. In our example, this could a�ect con�dentiality if we do not know

whether all requests to the Database Service are encrypted before sending. Additionally,

27

3. Running Example

input validation could be part of the processing, which analyzes the users’ input to counter

Uncertainty U1. Also, combinations of input validation and encryption are imaginable.

The third uncertainty source U3 a�ects the deployment of the Database Service and is

annotated on the associated arrow. Deployment decisions could be still uncertain at design

time [167], or depend on the runtime situation, e.g., in the context of Self-Adaptive Systems

(SASs) [272]. In Figure 3.1, we show two possible deployment locations, with the Database
Service being either deployed on-premise or in the cloud.

The fourth uncertainty source U4 is annotated to the Cloud Service and questions the

providers’ trustworthiness. Providers could void con�dentiality either intentionally, e.g., by

misusing data [60], or unintentionally, e.g., due to the lack of proper security requirements

and appropriate measures [77]. To that end, we can only assume the trustworthiness and

categorize whether providers are trustworthy enough or not.

Other and additional uncertainty sources are also possible within the running example, see

r ARC
3
N. We selected these uncertainties as they demonstrate di�erent locations, types,

and origins, while still keeping the running example simple and easy to understand.

3.3. Summary and Outlook

In this chapter, we introduced a running example that will be used throughout this thesis.

Already a software system of the size of our running example shows the challenge of

dealing with multiple uncertainty sources. Uncertainty sources and impact locations

arise at di�erent points within the software system and its environment, which might

cause complex interrelations and interactions [49] regarding con�dentiality. Especially in

larger software systems, analyzing them manually is not expedient. Thus, we need proper

modeling, analysis, and mitigation strategies to ensure con�dentiality.

Note, that the DFD shown in Figure 3.2 also depends on the outcome of the uncertainty

sources U1 – U4. Uncertainty U1 could alter the customer process input search details,
or Uncertainty U3 could a�ect the structure of the DFD. Additionally, the concrete form

of the DFD depends on the level of abstraction [64]. Building on previous advances in

uncertainty representation [80, 255], we �nd that:

� Finding: Even small software systems like our running example can have

many corresponding data �ow diagrams under uncertainty. Uncertainty hinders

precise modeling and analysis when not included properly within the model.

The presentation of the running example was based on DFDs and uncertainty which both

have been introduced in # Chapter 2: Foundations. Next, we use the running example

to give an overview of all contributions in # Chapter 4: Overview. We modeled the

software architecture of the running example based on the Palladio Component Model

(PCM). The model �les can be found in our data set [98]. An overview and �rst impression

is given in Appendix A.

28

3.4. In Simpler Words

3.4. In Simpler Words

A simple running example makes it easier to understand complex ideas. We introduce

the running example of an online shop known from everyday life. Online shops deal

with customer data and are thus required to protect that data and keep it con�dential.

Additionally, we presented di�erent sources of uncertainty in our example. Examples

are the behavior of customers or the trustworthiness of cloud service providers. Even in

this simple example, we can see how this uncertainty harms con�dentiality. For example,

if we are unsure whether providers behave maliciously, customers’ stored data could

be threatened. One approach to face the challenge of analyzing con�dentiality under

uncertainty will be presented in the remainder of this thesis.

29

Part II.

Contributions

4. Overview

In this chapter, we give an overview of the contributions of this dissertation. This shall

serve both as an introduction and as a high-level summary of the detailed explanations

in the following chapters. All contributions can be located in the research area of design

time analysis and architecture-based quality prediction [207]. Here, common bene�ts are

simplifying the work of software architects and enhancing existing analysis approaches,

e.g., regarding their applicability, scalability, accuracy, or usability [142].

The central research concern of this thesis is con�dentiality analysis under uncertainty by

using architectural modeling [99]. We divide the contributions of this thesis into three

parts: First, the identi�cation and classi�cation of uncertainty regarding con�dentiality.

Second, the uncertainty impact analysis by propagating uncertainty within architectural

models and data �ow diagrams. Third, the architecture-based con�dentiality analysis

under uncertainty. Each of these contributions can be used independently and enhances

the state of the art in its area. However, they can also be combined to form a comprehensive

end-to-end approach which is an aspired goal in the community [115, 273].

In the following, we describe the general procedure for uncertainty-aware analyses and

how our contributions are positioned within it. We brie�y introduce these contributions

afterward. Last, we give an overview of the tool support that has been developed to

complement the research.

� Literature: This chapter is based on the following (co-) authored publications:

[EMLS 2021], [ECSA-C 2021], [ACM MODELS-C 2022], [IEEE ICSA-C 2023],

[Springer ICETE 2023], [IEEE/ACM SEAMS 2024], [ACM/IEEE MODELS-C 2024]

4.1. Procedure for Uncertainty-Aware Analyses

Incorporating uncertainty in the analysis of software systems—thus achieving uncertainty

awareness—has been discussed within the literature [80, 243, 255]. Garlan [80] proposed to

include uncertainty as “�rst-class concern in the design, implementation, and deployment”

of software systems. Hezavehi et al. [115] conducted a community survey and proposed a

reference process for uncertainty management. They include phases like identi�cation,

modeling, impact analysis, and assessment. However, their process aims at Self-Adaptive

Systems (SASs) that include run time strategies that are beyond the scope of this thesis.

Regarding model-based analyses at design time [2], we consider four central activities:

33

4. Overview

1. Identification 2. Classification 3. Propagation 4. Analysis

?
? «deploy»

«deploy»

?

?

!

?
Uncertainty-ID:
Location:
Element Type:
Impact:

#55
Behavior
Component
Indirect

Figure 4.1.: Informal overview of the central activities of uncertainty-aware analyses

1. Identi�cation and awareness: To include uncertainty sources in the analysis,

they must be known �rst. Thus, raising awareness to recognize the presence of

uncertainty in a system is the necessary �rst step.

2. Classi�cation: To better understand the type of uncertainty sources and their

properties, they can be classi�ed. To that end, classi�cations and taxonomies provide

the foundations for the documentation and the discussion of identi�ed uncertainty.

3. Propagation: To assess the impact of identi�ed and classi�ed uncertainty sources,

they can be propagated through the architectural model. Estimating the potential

impact early helps in making more precise statements and decisions.

4. Analysis: To apply appropriate mitigation strategies, the e�ect of uncertainty on

the software system’s quality has to be analyzed. In our case, this means identifying

con�dentiality violations due to the identi�ed, classi�ed, and propagated uncertainty.

Figure 4.1 illustrates these four activities in an informal diagram. First, uncertainty sources

have to be identi�ed, e.g., within the software system or its environment. In Figure 4.1,

we annotate these uncertainty sources in the architectural model similar to the running

example presented in Chapter 3. In the second activity, these uncertainty sources have to

be described according to an appropriate classi�cation [104]. This does not only help in

the understanding of the underlying problem but also enables an uniform handling in the

later activities. The third activity is the propagation of uncertainty sources to estimate

their potential impact. Here, software architects develop an understanding of which parts

of the software systems could be a�ected and which parts can be safely ignored. The fourth
activity is the con�dentiality analysis under uncertainty. This activity yields con�dentiality

violations in those parts of the software system that have been impacted by uncertainty.

� Finding: Literature proposed processes for uncertainty management. Common

steps are the identi�cation, classi�cation, propagation, and analysis of uncertainty.

By applying these activities to con�dentiality analysis, we can provide a compre-

hensive approach to identify con�dentiality violations under uncertainty.

34

4.1. Procedure for Uncertainty-Aware Analyses

Roles: Soware Architect Security Expert Automated analysis

Model soware
system

Create analysis
definition

Identify uncertainty
sources

Preparation

[else]

[Relevant sources
identified]

Classify uncertainty
sources

Annotate model with
uncertainty sources

[Uncertainty is critical
for confidentiality]

Analyze the impact of
the uncertainty

[else]

Analyze confidentiality
under uncertainty

[Critical
impact]

[else]

Refine uncertainty
annotations

Figure 4.2.: Proposed analysis procedure showing the modeling and analysis activities and assigned roles.

A high-level description like the informal overview introduced in Figure 4.1 serves as an

overview or introduction. However, due to the high abstraction, two important details are

left out. First, the procedure does not need to be linear. Sometimes, not all activities are

required, e.g., because a critical subsystem has to be always analyzed despite the results

of the propagation. Additionally, some activities or the procedure might be repeated,

either because of the understanding of the uncertainty or because the system evolves

[273]. Especially with regard to uncertainty and SASs, approaches tend to be iterative and

incremental, as in continuous architecture evaluation [243], or in the Monitor-Analyze-

Plan-Execute-Knowledge (MAPE-K) loop [136, 274]. Second, the informal overview lacks

role descriptions. Specifying expertise and required knowledge helps in understanding

the application of analysis procedures.

To address these shortcomings, we provide a more detailed procedure with Figure 4.2.

We reuse the roles proposed for architectural con�dentiality analysis [233], i.e., software
architect and security expert. Note, that we do not introduce a role for uncertainty experts.
With appropriate means like tool-supported identi�cation, classi�cation, and analysis

approaches, only minimal additional knowledge shall be required. Thus, we do require

expert knowledge of uncertainty classi�cation or uncertainty sources in general.

The procedure starts with the preparation phase which comprises modeling the software

system [234, 237] and creating the analysis de�nition [105]. These steps originate from ar-

chitectural data �ow analysis [233]. An architectural model has to be de�ned by a software

architect using an Architectural Description Language (ADL) like the Palladio Component

Model (PCM) or Data Flow Diagrams (DFDs). Afterward, con�dentiality requirements

serve as input for the security expert to create the con�dentiality analysis de�nition. This

enables identifying con�dentiality violations without considering uncertainty.

35

4. Overview

First, uncertainty sources have to be identi�ed by the security expert. Although we do not

require expert knowledge of uncertainty, security expertise helps estimate the potential

impact on con�dentiality. Uncertainty sources can be identi�ed in discussions, architecture

reviews, or using checklists, guidelines, or catalogs [103]. If no relevant sources have been

identi�ed, the procedure ends until new knowledge about uncertainty is gained. This step

represents the �rst activity of identi�cation and awareness.

In the next step, the identi�ed uncertainty sources are classi�ed according to an appropriate

classi�cation [104]. This step is performed by the security expert with the help of existing

catalogs that bootstrap the classi�cation. If only uncertainty sources have been identi�ed

that clearly have no impact on con�dentiality, the procedure ends. This step represents

the second activity. Based on the result of the classi�cation, the uncertainty sources

are annotated to the architectural model. This does not require security expertise but

knowledge of the ADL in use and is thus driven by the software architect.

Afterward, the uncertainty impact analysis propagates the uncertainty source within the

software system and calculates the potential impact [102]. This step represents the third

activity and is fully automated and thus requires neither knowledge about security nor

software architecture. If no relevant uncertainty impact is identi�ed, e.g., because only

non-critical parts of a software system are a�ected, the procedure ends. Otherwise, the

con�dentiality under uncertainty has to be analyzed which is the fourth activity. This

includes a more detailed speci�cation of the uncertainty sources for a precise analysis

result. While the re�nement of the information about the uncertainty is conducted by the

software architect, the analysis is fully automated. Afterward, the procedure ends.

Note that the end of the procedure does not imply the end of the design and analysis process.

If the knowledge about uncertainty or the software systems changes, the procedure can

be restarted. Additionally, all artefacts like the modeled software architecture, the analysis

de�nition, collected uncertainty sources and their classi�cation and annotation can be

reused. Thus, we consider this procedure to be iterative. As stated previously, we do

not require expert knowledge about uncertainty. The classi�cation and the automated

analyses, i.e., the uncertainty impact analysis and the uncertainty-aware con�dentiality

analysis encapsulate the required knowledge [101]. The procedure has to be incremental

as the existence of uncertainty is inherent to software systems. It can never be assured to

be aware of all uncertainty sources, as unknown unknowns [195] might exist. In this way,

uncertainty is similar to bugs in software systems, where testing can only be used to show

the “presence of bugs, but never to show their absence” [67]. Additionally, the procedure

requires exit points after each activity when more knowledge is gained about the impact

of uncertainty on the software system’s con�dentiality.

� Finding: Due to the nature of uncertainty, it is impossible to ensure its ab-

sence. However, not every uncertainty source causes con�dentiality violations.

This depends on many aspects like the uncertainty itself, con�dentiality re-

quirements, security measures, or the software’s architecture. A procedure for

uncertainty-aware con�dentiality analysis has to be iterative and incremental.

36

4.2. Overview of the Contributions

4.2. Overview of the Contributions

In the following, we introduce the central contributions of this thesis and relate them to

the procedure presented hereabove. We divide the contributions into three main parts:

C1 Identi�cation and classi�cation: Recognizing and understanding the types of

uncertainty and their relation to con�dentiality from an architectural point of view.

C2 Uncertainty impact analysis: Propagating uncertainty using architectural models

and DFDs to predict the uncertainty impact on the system’s con�dentiality.

C3 Uncertainty-aware con�dentiality analysis: Extending architecture-based con-

�dentiality analysis to consider uncertainty as a �rst-class concern in both modeling

and analysis to identify con�dentiality violations under uncertainty.

First, with Contribution C1, we aim to support software architects in identifying and

classifying relevant uncertainty sources with a potential impact on con�dentiality. This is

an elemental �rst step, as awareness about uncertainty sources and their properties is key

in documentation, modeling, discussion, and analysis [81]. This combines the activities of

identi�cation and classi�cation in one contribution, as both are interdependent and support

each other. We contribute a classi�cation of software-architectural uncertainty [104] and

support the collaborative identi�cation of uncertainty sources [103]. During this research,

we also examine Cyber-Physical Systems (CPSs) as a relevant type of uncertainty-a�icted

software systems [2]. Our �ndings answer ä Research Question 1, which is related to

the identi�cation and description of uncertainty with regard to con�dentiality.

Our second Contribution C2 addresses the impact analysis of uncertainty, which supports

the early prediction and assessment of the uncertainty impact. Similar to change impact

analysis [210, 211], we propagate uncertainty through the software architecture. Besides

the theoretical foundations of modeling and propagating uncertainty in architectural

models and DFDs, this contribution also includes a fully automated analysis [102]. Based

on our concept of uncertainty propagation in DFDs, additional research led to the for-

mulation of Uncertainty Flow Diagrams (UFDs) [49]. They support software architects

in understanding and analyzing uncertainty interactions [50]. In sum, these �ndings

provide an answer to ä Research Question 2, which relates to architectural uncertainty

propagation and impact analysis.

In our third Contribution C3, we develop con�dentiality analysis approaches that respect

uncertainty. To that end, we extend an existing architecture-based con�dentiality analysis

which utilizes DFDs [233, 236]. We provide approaches for di�erent types of uncertainty,

e.g., environmental uncertainty [37], or structural uncertainty [266]. By de�ning an analy-

sis framework for architectural data �ow analysis, we also provide the baseline for more

comprehensive approaches [36]. We use this framework to research the expressiveness,

accuracy, and scalability of data �ow-based con�dentiality analysis under uncertainty

[101]. These approaches address ä Research Question 3, which asks how to consider

uncertainty in architectural con�dentiality analysis.

37

4. Overview

4.3. Tool Support

In addition to answering the research questions of this thesis, we provide comprehensive

tool support. For each contribution, we realized tooling to demonstrate the applicability of

the concepts. The prototypical implementation is not only used in the evaluation but also

shall support further research [36]. A recent Systematic Literature Review (SLR) found a

lack of replication packages in software architecture research [142]. To address this, all

tool support is open source, publicly available and also part of this thesis’ data set [98].

Automated analyses support software architects because they encapsulate expert knowl-

edge, e.g., annotation and propagation rules [104]. Especially in large software systems or

systems of systems, manual analysis is also not feasible and error-prone [234]. In our itera-

tive procedure, it cannot be assumed that software architects manually evaluate hundreds

of DFD nodes [104] without mistakes. Additionally, after each change to the annotated

uncertainty sources or the software system, the manual work would have to start all over

again. Thus, it is important to ensure that the developed concepts can be automated to

a high degree without manual e�ort required from software architects. Similar to the

division into three contributions, we provide three tooling artifacts. We introduce and

shortly summarize their functionality in the following
1
.

r ARC
3
N stands for research archive for Software-architectural uncertainty. This is a

web-based interactive catalog of uncertainty sources that can a�ect con�dentiality [103].

It simpli�es the identi�cation by connecting a classi�cation [104] to a catalog approach.

All data is publicly available, extensible by other researchers, and can be integrated into

existing analyses. This catalog of uncertainty sources supports Contribution C1.

r UIA meansuncertainty impact analysis and is a tool for propagating uncertainty sources

within architectural models and DFDs. It extends the data �ow analysis framework [36].

The tool support is realized as an Eclipse plugin and can be integrated into the existing

Palladio tooling [207]. The analysis yields an impact set for uncertainty sources which can

be annotated to the software architecture. Besides the annotation, no additional e�ort is

required for existing PCM models as the propagation is fully automated. See Appendix B

for an exemplary impact analysis result. This supports our second Contribution C2.

r Abunai is short for architecture-based and uncertainty-aware con�dentiality analysis2
.

Similarly to the uncertainty impact analysis, this tooling is realized as an Eclipse plugin

and extends the data �ow analysis framework [36] within the Palladio approach [207]. This

analysis enables software architects to re�ne the uncertainty annotations by providing

possible scenarios [101]. Afterward, the automated analysis considers the uncertainty

impact in the data �ow analysis and yields con�dentiality violations with respect to

uncertainty. See Appendix A and Appendix C for exemplary analysis inputs and analysis

results. This is one of the analysis approaches that support Contribution C3.

1
At the time of writing—and hopefully a long time to come—the most up-to-date version of all tool support

is online available here: https://abunai.dev/. Once the link is broken, please refer to the data set [98].

2
Furthermore, the Japanese word abunai translates to dangerous, risky, or uncertain. How �tting!

38

https://abunai.dev/

4.4. Illustration using the Running Example

4.4. Illustration using the Running Example

We demonstrate the procedure, the contributions, and the tool support brie�y using the

running example introduced in Chapter 3. We assume a team of software architects and

security experts that already modeled the software system using PCM and created the

analysis de�nition to analyze the system’s con�dentiality. See the preparation phase in

Section 4.1 for more details.

First, relevant uncertainty sources have to be identi�ed by security experts. As part of

our �rst Contribution C1, the tool support r ARC
3
N provides a catalog of uncertainty

sources that serve as a starting point. The catalog also contains all uncertainty sources

which have been annotated to the running example, e.g., the user input (U1), or the

provider’s trustworthiness (U4). As the uncertainty sources in this catalog already are

classi�ed, the subsequent step of uncertainty classi�cation is simpli�ed or can be skipped.

All of the contained sources are relevant regarding con�dentiality. The software architect

annotates the uncertainty sources within the architectural model in the running example.

For example, the user input uncertainty (U1) is annotated to the Customer, and the data

processing uncertainty (U2) is annotated to the Online Shop component. In Figure 3.1, we

illustrate this annotation using circled question marks.

Using the architectural models and the annotations as input, the impact analysis calculates

the potential impact on con�dentiality. This is part of our second Contribution C2, and

fully automated with r UIA. In the running example, the impact set of all uncertainty

sources contains the Database Service component. As the database stores con�dential data,

we interpret this impact as being critical continue with the step of uncertainty source

re�nement. The precise modeling of uncertainty sources and scenarios and the analysis are

part of our third Contribution C3. In the running example, the software architects describe

all relevant scenarios, e.g., the possible deployment locations of the On Premise Server or

the Cloud Service. Afterward, the automated analysis r Abunai yields con�dentiality

violations due to single or multiple uncertainty scenarios. In our running example, the

lack of proper data processing (U2) and the deployment in the cloud (U3) without proper

security measures violate con�dentiality. After addressing these issues, the procedure can

be repeated. This also happens whenever the software system changes, e.g., due to the

introduction of a new encryption component, or the knowledge about the uncertainty

changes, e.g., because the scenario of the lack of any data processing can be excluded.

4.5. Summary and Outlook

In this chapter, we discussed the procedure of uncertainty-aware analysis and summarized

the contributions of this thesis. First, we investigated multiple proposals for required

activities in uncertainty-aware analysis. We combined them to propose a procedure for

architecture-based con�dentiality analysis under uncertainty. This procedure contains

the central activities of identi�cation, classi�cation, propagation, and analysis. Besides

these activities, our proposed procedure also contains modeling activities carried out by

39

4. Overview

software architects and security experts. The analyses are fully automated and thus shall

not require additional knowledge about uncertainty. The procedure is both iterative and

incremental to react to changes in the system, its environment, and its uncertainty sources.

Put simply, uncertainty is uncertain, and we have to deal with it.

Afterward, we gave an overview of the central contributions of this thesis. They cover the

aforementioned activities of identi�cation and classi�cation with Contribution C1, the

propagation and uncertainty impact analysis with Contribution C2, and the uncertainty-

aware con�dentiality analysis with Contribution C3. All contributions are tool-supported

with three research artifacts: r ARC
3
N collects and explains uncertainty sources and their

classi�cation, r UIA automatically propagates uncertainty in an architectural model to

calculate the potential impact, and r Abunai provides uncertainty-aware con�dentiality

analysis based on architectural modeling and DFDs. Last, we illustrated the tool-supported

contributions and their interrelationships using the running example. The application of

our prototypical tooling is also shown in Appendix A, Appendix B, and Appendix C.

Throughout this chapter, we stressed the lack of an explicit role for uncertainty experts in

the proposed procedure. Ideally, automated analyses and other artifacts should encapsulate

the required knowledge about uncertainty. We will return to this idea in the following chap-

ters and explain the consequences in more detail. The illustration in this chapter was based

on # Chapter 3: Running Example. In the following three chapters, we present the

contributions in detail. In # Chapter 5: Identi�cation and Classi�cation of Uncer-
tainty Regarding Con�dentiality, we show the �rst Contribution C1, in# Chapter 6:
Uncertainty Propagation to Enable Uncertainty Impact Analysis, we introduce the

second Contribution C2, and in#Chapter 7: Uncertainty-Aware Data FlowAnalysis
to Identify Con�dentiality Violations, we discuss the third Contribution C3.

4.6. In Simpler Words

This chapter gives an overview that helps to better understand the relation of the individual

contributions of this thesis. Our central research concern is analyzing con�dentiality under

uncertainty. Uncertainty can threaten the con�dentiality of sensitive user data like names

or addresses. An example is the uncertainty about the encryption of this data. If we cannot

guarantee the correct encryption, we cannot guarantee con�dentiality.

We propose four activities which help to act upon such uncertainty. First, the uncertainty

sources have to be identi�ed and described. We developed tools that contain catalogs and

descriptions of uncertainty sources. This minimizes the e�ort and expertise requirements

of software architects and security experts. Afterward, we assess the impact of uncertainty

on con�dentiality using an automated analysis. For example, the lack of encryption could

impact con�dentiality. Our contributions help to identify that this uncertainty exists and

how great its impact is. If the impact is relevant, our automated analysis helps to �nd

con�dentiality violations that can be caused by this uncertainty.

40

5. Identification and Classification of
Uncertainty Regarding Confidentiality

In this chapter, we present the �rst Contribution C1. This contribution covers the �rst

two activities shown in Section 4.1, i.e., the identi�cation and classi�cation of uncertainty.

We focus on con�dentiality as a central quality property for this thesis.

As introduced in Chapter 1, con�dentiality demands that “information is not made available

or disclosed to unauthorized individuals, entities, or processes” [120]. With the growing

size and connections of today’s software systems, ensuring con�dentiality becomes a

major challenge. We describe in Chapter 4 that we use design-time con�dentiality analysis

[236, 256] to identify �aws early and to avoid costly repairs of running systems [32]. Here,

data �ow-oriented analyses became common because “problems tend to follow the data

�ow, not the control �ow” [239]. However, especially in early development and in complex

systems of systems, the software architecture is subject to uncertainty. This does not

only a�ect decision making—also known as the cone of uncertainty [167]—but even blurs

which decisions should be prioritized. When not managed properly, the lack of awareness

of uncertainty can void a system’s con�dentiality. Also, the OWASP Top 10 [192] lists

issues like insecure design as top security risks. Thus, we have to actively address the

phenomenon of uncertainty and its impact on the con�dentiality analysis results.

Managing uncertainty includes activities like the identi�cation and classi�cation [2, 115,

272]. Here, multiple taxonomies were de�ned to better understand the nature of uncer-

tainty [195, 202, 263]. However, they mostly originate from the domain of Self-Adaptive

Systems (SASs) and do not focus on con�dentiality. The consequences are a lack of appli-

cability and an increase in ambiguity. The relation of software architecture, con�dentiality

and uncertainty remains unclear [99]. And while “there is growing consensus on the im-

portance of uncertainty” [115], much is yet unknown regarding the impact of uncertainty

on software systems [80]. Hezavehi et al. [115] conducted a survey on uncertainty. They

�nd a “lack of systematic approaches for managing uncertainty” [115] and that uncertainty

should already be addressed at design time. This statement is supported by the work of

Troya et al. [255]. They conducted a Systematic Literature Review (SLR) and analyzed 123

papers. They state that “software models are still falling short of explicitly representing

uncertainty” [255] and that software engineers require more help “to identify the types of

uncertainty that can a�ect their application domains” [255].

Uncertainty can arise within software systems, e.g., design choices, or recon�guration

at runtime, and their environment, e.g., sensor data, or humans in the loop [2, 195]. To

enhance existing con�dentiality analysis approaches, software architects require already

41

5. Identi�cation and Classi�cation of Uncertainty Regarding Con�dentiality

known uncertainty sources, which are also called known unknowns or �rst-order uncer-

tainty [195], e.g. known variation of sensors or user behavior. Second-order uncertainty,

also called unknown unknowns, cannot be analyzed due to the lack of knowledge about its

sources, e.g., due to unforeseen environmental conditions, which limits the development

of mitigation strategies [273]. This Uncertainty Awareness Problem (UAP) impedes the

comprehensive analysis of software systems which poses security threats that could have

been resolved at design time. However, it is a highly subjective phenomenon, as it only

depends on the knowledge or awareness of the software architect conducting the analysis.

Put simply, one cannot analyze what one does not know.

The UAP and the related need for collecting uncertainties are supported in the literature.

Recent surveys and research agendas highlight this problem of dealing with unanticipated

change [272], the need to share knowledge of uncertainty [115], and the development of

“reusable methods to assess and manage uncertainties” [273]. A class between known and

unknown uncertainty was proposed, as not every change is completely unanticipated and

can be addressed by �exible designs using intentional over-engineering or meta-adaptation

[81]. To address this, classi�cation approaches alone are not su�cient but require additions

like collections and surveys [202, 255], or expert knowledge [70, 159]. Classi�cations

only describe properties of uncertainty which does not resolve the awareness problem,

publication-based collections are hard to extend dynamically and are thus prone to become

outdated and incomplete, and relying on experts is not expedient. Developing a joined

approach of identi�cation and classi�cation is a step towards end-to-end approaches that

promise a higher impact than incrementally enhancing existing analyses [273].

In sum, we aim to address both the identi�cation and classi�cation problem to include

uncertainty in con�dentiality analysis based on Data Flow Diagrams (DFDs). This breaks

the limitation of previous approaches that were only able to analyze con�dentiality with

perfect knowledge, i.e., by excluding uncertainty about software systems and their data

[233]. We summarized this research concern in the �rst research question:

ä Research Question 1: How to identify, describe and classify software-

architectural uncertainty regarding its relation to and impact on con�dentiality?

The remainder of this chapter is structured as follows: First, we summarize the problem

statement. We revisit the relation of uncertainty, con�dentiality, and software architecture.

We investigate existing uncertainty classi�cations and their appropriateness to addressing

con�dentiality. Then, we de�ne a new classi�cation of uncertainty regarding con�den-

tiality and discuss, based on this classi�cation, how to represent uncertainty in data �ow

diagrams. Afterward, we build on the classi�cation to present an uncertainty catalog ap-

proach that helps in the identi�cation of uncertainty and addresses the UAP. We close the

chapter with known assumptions and limitations, and also a summary and an outlook.

� Literature: This chapter is based on the following (co-) authored publications:

[EMLS 2021], [ECSA-C 2021], [ACM MODELS-C 2022], [Springer ICETE 2023],

[ACM/IEEE MODELS-C 2024]

42

5.1. Problem Statement

5.1. Problem Statement

We summarize the problems P1 – P5 addressed by Contribution C1. Finding solutions to

these problems helps to provide a comprehensive answer to ä Research Question 1.

P1: Knowledge about the relation of uncertainty and confidentiality We need to better

understand the role of uncertainty and its relation to con�dentiality in software architec-

ture. This includes considering uncertainty at design time and runtime and also relating

uncertainty to Architectural Design Decisions (ADDs), which is related to architectural

decision-making under uncertainty [159]. We see this as a precondition to de�ning precise

classi�cations of uncertainty regarding con�dentiality [99]. The solution to this problem

is considered to be non-trivial due to the variety of uncertainty.

P2: Classification of uncertainty tailored to confidentiality We require classi�cations tai-

lored to con�dentiality and software architecture. There exist classi�cations from other

domains [195, 202, 263], but they fall short in representing the impact of uncertainty on

con�dentiality. Additionally, they do not relate the classi�ed uncertainty to software archi-

tecture and ADDs. Here, a classi�cation scheme to aid software architects in understanding

the impact of uncertainty on con�dentiality. This shall raise awareness of properties of

uncertainty and their relevance for choosing appropriate ADDs and mitigation strategies.

We intentionally speak of a classi�cation rather than a taxonomy because we focus on a

subset of uncertainty, i.e., known uncertainty on architectural abstraction.

P3: Representation of uncertainty as first-class concern in DFDs Garlan [80] raised the

need to represent uncertainty as a �rst-class concern in the design of software systems. This

applies to ADLs as well as to DFDs. Whether in tool-supported analysis or in discussions

between software architects, uncertainty must be represented appropriately to be taken

into account. This includes de�ning a notation for uncertainty impact in DFDs that works

for all uncertainty types of the classi�cation. Only limited work towards considering

uncertainty in DFDs exists [68], which only considers selected uncertainty types.

P4: Expert knowledge required to understand uncertainty sources Due to space limita-

tions in publications, previous approaches only explain classi�cations brie�y without

comprehensive data sets [202]. We stress the importance of explainability [26], e.g., us-

ing examples, interactive visualizations, and context information from the underlying

classi�cation. Additionally, classi�cations provide dimensions or categories to describe

uncertainties but often fall short in relating multiple uncertainty types which impairs

usability [104]. It should be possible to �lter, search, and navigate between uncertainties,

which requires de�ned relations between them. This is especially relevant as uncertainty

sources are rarely independent and interactions can occur [49]. We do not require an

uncertainty expert role in our procedure, see Section 4.1. Therefore, our contributions to

the identi�cation and classi�cation must be understandable without extensive training.

43

5. Identi�cation and Classi�cation of Uncertainty Regarding Con�dentiality

P5: Extensible uncertainty source catalogs to support the identification The Uncertainty

Awareness Problem (UAP) states that we need awareness of uncertainty sources to consider

them in the uncertainty mitigation process. One approach to this problem is a collection of

uncertainty sources, building on the solutions to the aforementioned problems. However,

publication-based collections are hard to reuse and extend [202] and thus prone to become

outdated and incomplete. Knowledge can be scattered between researchers or organi-

zations which complicates collaboration [251]. Additionally, research artifacts often are

unavailable [142] or partially broken [59, 86]. To address this, an open-source and publicly

available catalog is required, which shall be easy to discuss and extend by researchers

and practitioners. To enable the seamless integration into uncertainty-aware analyses

and to enable end-to-end approaches [273], it shall be possible to transform the catalog

into a machine-readable format like JavaScript Object Notation (JSON) or XML. Related

collections of architectural knowledge [86], or privacy patterns [59] have shortcomings

regarding usability, extensibility, and longevity of the contained information.

5.2. Understanding the Relation of Uncertainty,
Confidentiality, and So�ware Architecture

We address the �rst Problem P1 by de�ning software-architectural uncertainty, providing

a distinction of uncertainty source and uncertainty impact, and relating the phenomenon

of uncertainty to the cone of uncertainty [167], con�dentiality, and ADDs.

5.2.1. Defining So�ware-Architectural Uncertainty

We understand software-architectural uncertainty as uncertainty, that can be described on

architectural abstraction and where (early) awareness enables considering its impact on

quality attributes like con�dentiality. We do not only refer to known unknowns, as this

only implicates awareness which is too imprecise. Additionally, whether an uncertainty

sources is known or unknown depends on the knowledge or awareness of the software

architect—and is not directly related to the uncertainty as such. We require architectural

abstraction, e.g., as part of an architectural model with a speci�ed impact on software-

architectural elements, e.g., software components, interfaces, or hardware resources.

While requiring architectural abstraction, we do not limit the representation to a speci�c

notation but consider multiple model types like ADLs or DFDs. We exclude higher orders

of uncertainty [195] as their impact cannot immediately be expressed due to the lack of

awareness. However, awareness can be raised with increasing knowledge, e.g., by asking

a domain expert [194], by using a classi�cation scheme for systematic treatment [263], or

by using uncertainty catalogs [103]. We stress that this subset can be accurately assessed

using architecture-based analysis—and architectural methods in general. Uncertainty that

is not covered by this de�nition is not in the scope of this thesis.

44

5.2. The Relation of Uncertainty, Con�dentiality, and Software Architecture

When speaking about uncertainty in software architecture, we propose to distinguish

between the uncertainty source and the uncertainty impact. Uncertainty sources can exist

within the software system or its environment [2], e.g., due to a lack of knowledge or

natural variability. As such, it is hard to both resolve uncertainty sources directly, and

also to analyze their relevance without considering the system under analysis. However,

the impact of uncertainty can be analyzed and mitigated [2]. Speaking of uncertainty in

terms of impact rather than only considering the uncertainty’s type or source enables

software architects to focus on its mitigation during design, e.g., to enhance con�dentiality.

Most importantly, the source and the impact of the uncertainty do not have to be located

in the same element—or even the same component or part—of a software architecture.

Understanding the impact locations of uncertainty helps in understanding uncertainty

sources and, ultimately, in uncertainty mitigation. This potentially large spatial separation

of source and impact especially motivates the need for uncertainty propagation [49, 102].

� Finding: Software-architectural uncertainty can be represented and analyzed

on architectural abstraction, e.g., as a �rst-class concern in Architectural Descrip-

tion Languages (ADLs) or Data Flow Diagrams (DFDs). We distinguish between

the uncertainty source, which can be within the software system or its environ-

ment, and the uncertainty impact, which is the location within the software sys-

tem where the uncertainty a�ects a quality property like con�dentiality.

In the running example presented in Chapter 3, all four uncertainty sources represent

software-architectural uncertainty. The user input (U1) and the provider trustworthiness

(U4) are in the environment of the software system while the data processing (U2) and

the deployment (U3) lie within the software system. Because all four represent software-

architectural uncertainty, we can annotate the uncertainty sources within the architectural

model, e.g., to a component or resource. Here, we can also see the di�erence between

source and impact: The uncertainty source of the user’s input (U1) is annotated to the

Customer However, the actual negative impact on con�dentiality might happen within the

Database Service component that is depicted on the other side of the system. We illustrate

the system context boundary and the impact of Uncertainty U1 in Figure 5.1.

5.2.2. Existing Notions of Uncertainty

Multiple de�nitions of uncertainty exist, see Section 2.1. Regarding software-architectural

uncertainty, we consider two major points of view. First, the concept of uncertainty

stemming from the research community of SASs [272, 273]. Here, uncertainty is often

referred to as unanticipated change, fuzziness, noise, or incomplete knowledge [273]

and located within the system context or environment [272]. Uncertainty is seen as a

challenge which has to be considered within the system design and “engineering software-

intensive systems that can handle uncertainty is complex” [272]. Second, from a software

engineering point of view, the cone of uncertainty describes the inherent phenomenon

of the lack of knowledge about a software system in early development phases [167].

Here, uncertainty is constituted as part of every software project and is reduced over time,

45

5. Identi�cation and Classi�cation of Uncertainty Regarding Con�dentiality

Database ServiceOnline Shop

?
U2: Data Processing?

U1: User Input

Customer ?U3: Deployment

U4: Provider Trustworthiness Cloud Service

«deploy»

?

Potential Uncertainty Impact

System Context Boundary

Figure 5.1.: Combined component and deployment diagram of the running example with annotated uncer-

tainty sources, the system context boundary, and the impact of the user input uncertainty source.

e.g., by making design decisions like ADDs. In our running example, the user input (U1)

as human in the loop and the provider trustworthiness (U4) as uncertain environment

represent uncertainty sources known from SASs. Opposite to this, the data processing

(U2) and the deployment (U3) represent design decisions that would reduce the cone of
uncertainty. Regarding software-architectural uncertainty, we do not distinguish between

these two perspectives, as both are relevant regarding con�dentiality. As long as we can

represent the uncertainty sources in architectural models and analyze their impact, we

can asses their e�ect on con�dentiality.

When dealing with software-architectural uncertainty, considering ADDs helps to struc-

ture the design process. At the beginning of this process, much is yet unknown or imprecise

and ADDs are made under assumptions [167], e.g., that the provider is trustworthy in

Uncertainty U4. Making this uncertainty explicit can help to mark decisions as challenged

[150] and consider backtracking
1
. While some uncertainty only exists due to not yet

decided ADDs, others cannot be reduced immediately [195], e.g., Uncertainty U1 regard-

ing the user input. Still, creating awareness of the uncertainty source can help re�ne

the architecture and make more informed statements about con�dentiality. This way,

uncertainty can be understood, modeled, analyzed, and—eventually—managed.

There are multiple relevant properties of ADDs that help in the mitigation of uncertainty.

The number of solutions of related ADDs [124] can help to estimate whether the uncer-

tainty can already be fully reduced at design time, e.g., by design space exploration [70,

144]. We distinguish between closed sets that could at least partially be analyzed and open

sets with a potentially in�nite number of solutions or con�gurations. In our example,

Uncertainty U3 relates to the ADD of the deployment of the Database Service and repre-

1
A couple of years ago, I had the possibility to discuss this very point with Philippe Kruchten. He stressed

the importance and costs of backtracking due to false assumptions and design faults. This was another

motivation to research the early identi�cation and impact analysis of software-architectural uncertainty.

46

5.2. The Relation of Uncertainty, Con�dentiality, and Software Architecture

sents a closed set. But even with a closed set of alternatives, one cannot guarantee that a

given ADD might not be challenged in the future [150] due to changes in requirements or

the system’s execution context. Thus, when speaking about decisions under uncertainty,

considering the probability, possibility and costs of revisions can help to quantify the risk.

This awareness also helps in the prioritization of ADDs and deciding whether existing

mitigation is su�cient.

However, only considering ADDs to understand the impact of uncertainty is not enough

because uncertainty might not be directly connected to a single decision, e.g., to resolve

Uncertainty U4. We argue to also consider which architectural elements are a�ected,

rather than only considering this transitively via the impact of ADDs. This does help in

understanding the consequences of uncertain in�uences regarding con�dentiality and also

helps to connect these to architectural analyses to identify con�dentiality violations.

� Finding: Di�erent notions of uncertainty exist, e.g., the cone of uncertainty
or uncertainty in Self-Adaptive Systems (SASs). We do not limit software-

architectural uncertainty to one of these notions, as all of these uncertainties

can a�ect con�dentiality. Regarding the software architecture, considering Archi-

tectural Design Decisions (ADDs) helps for early assessment and prioritization.

5.2.3. Investigating Existing Uncertainty Classifications

Based on our understanding of the relation of uncertainty, software architecture, and

con�dentiality presented in the previous section, we investigate existing uncertainty

classi�cations stemming from related work. Hereby, we address Problem P2 regarding

the need for a classi�cation tailored to con�dentiality. As discussed previously and also

in Section 2.1, there are many types, notions, and dimensions of uncertainty. In the

following, we follow a top-down approach by discussing shortcomings of classi�cations

and taxonomies while focusing on con�dentiality.

We gathered and assessed categories, i.e., dimensions, or characteristics, and options, i.e.,

entries of a category in Section 2.1. Here, the �rst category was the location of uncertainty,

see Table 2.1. Although this category is used in many taxonomies [41, 162, 184, 195, 255,

263], is has several shortcomings. There is no common distinction between the source

and the impact location of uncertainty. Also, there is no common understanding of the

term model as the taxonomies originate from di�erent research areas. This impedes the

common understanding of uncertainty regarding con�dentiality. In the running example,

Uncertainty U3 about the deployment could be classi�ed as context, model structural,
model technical, and belief uncertainty. Such ambiguity can invalidate the purpose of

a classi�cation. The second category was the level of uncertainty, see Table 2.1. In

the running example, all uncertainty sources represent known unknowns, i.e., �rst-order

uncertainty, because we are aware of the sources and can annotate them in the architectural

model. However, the concrete representation might be di�erent, e.g., using scenarios to

describe the deployment of UncertaintyU3. As discussed previously, we �nd distinguishing

47

5. Identi�cation and Classi�cation of Uncertainty Regarding Con�dentiality

between a known and unknown uncertainty to be not expedient as it only depends on the

viewpoint of the software architects whether they are aware of the uncertainty source.

The next three categories are the nature, manageability, and the resolution time, see Table 2.2.

In our running example, the uncertainty sources in the software system, i.e., UncertaintyU2
about the data processing and Uncertainty U3 about the deployment, represent epistemic

uncertainty. The uncertainty sources in the system context, i.e., Uncertainty U1 about

the user input and Uncertainty U4 about the provider trustworthiness can be classi�ed as

epistemic or aleatory, depending on the point of view. This shows again the ambiguity of

this category. All uncertainties in the running example can be described using scenarios

and resolved between design and run time.

The last categories are the impact on quality of uncertainty and the relationships between

uncertainties. To focus analysis capabilities, software architects must know about potential

impacts and their severity. Although we focus on con�dentiality, the analysis of multiple

properties is possible, e.g., by using software architecture evaluation approaches under

uncertainty [243]. In the running example, all four uncertainty sources can have an

impact on con�dentiality. Uncertainty relationships can cause hard-to-�nd problems

regarding quality properties [50]. However, they often require further analysis based on

the software system under study [49]. In the running example, there is such a relationship

between Uncertainty U3 about the deployment and Uncertainty U4 about the provider’s

trustworthiness. The latter only a�ects the con�dentiality of the software system if the

cloud provider is chosen in the �rst place. As described above, such uncertainty interactions

have to be further analyzed [49], and cannot be generally described using a classi�cation.

� Finding: The literature comprises many classi�cations and taxonomies of un-

certainty that propose categories like location, level, or nature. Despite being

mostly relevant regarding con�dentiality, they use varying terminology, con-

tain ambiguity, and do not focus on uncertainty sources. Thus, they have to be

adapted to classify software-architectural uncertainty sources.

5.3. Classification of Uncertainty Regarding Confidentiality

Based on the categories and options we identi�ed in existing classi�cations of uncertainty,

we de�ne a novel classi�cation scheme of uncertainty regarding con�dentiality. This

allows us to build on existing knowledge from the domain of SASs while aligning the

classi�cation to software-architectural uncertainty and con�dentiality. Additionally, we

focus on uncertainty sources as the primary concern regarding identi�cation and early

mitigation [195, 202], see Section 5.2. This addresses our second Problem P2 regarding the

need for a classi�cation tailored to con�dentiality.

Our classi�cation scheme consists of 8 categories with a total of 27 options and is shown in

the tables 5.1 – 5.8. The categories are based on taxonomies of uncertainty [41, 71, 162, 184,

195, 202, 263], related work on ADDs [124, 150] and ADLs like the PCM [207]. A category-

based classi�cation helps to group uncertainties and identify similar characteristics and

48

5.3. Classi�cation of Uncertainty Regarding Con�dentiality

Location: Describes where an uncertainty manifests itself within the architecture

and which view or concern of the software architecture is primarily applicable.

System-Independent, Nominal, Immutable

System Structure The uncertainty is related to the structure of the software sys-

tem and becomes visible in structural views, e.g., component

diagrams, or class diagrams.

System Behavior The uncertainty is related to the behavior of the software system

and becomes visible in behavioral views, e.g., activity diagrams,

or sequence diagrams.

System Environment The uncertainty is related to the environmental context of the

software system and becomes visible when considering external

factors, e.g., in deployment diagrams.

System Input The uncertainty is related to the input to the software system

and becomes visible when considering external interface speci-

�cations, or usage descriptions.

Table 5.1.: Uncertainty classi�cation regarding con�dentiality. Category: Location.

mitigation approaches. Once classi�ed, the information can be reused across di�erent

software architectures. To create this classi�cation, we assessed and adapted existing

categories and combined or re�ned their options, see Subsection 5.2.3. We repeated this

process until each category ful�lled its purpose, i.e., being able to describe and partition

uncertainty sources with respect to con�dentiality in software architectures.

In this work, we focus on con�dentiality requirements during the design time. Thus, the

categories should be interpreted from an architectural point of view, e.g., while modeling

a software system. In the following, we explain each category in detail. We provide

information about the rationale and possible bene�ts of applying each category. We also

de�ne whether the options are unordered, i.e., nominal, or ordered without de�ned distance,

i.e., ordinal. Last, we specify if the gained knowledge by classi�cation can be reused. Here,

a category can be speci�c for the uncertainty source and thus system-independent, or

speci�c for the software architecture under investigation and thus system-speci�c. This

also concerns the question of whether the speci�c classi�cation of a source of uncertainty

is immutable and does not change after the identi�cation or mutable and can be changed

if more information is obtained during modeling and analysis.

5.3.1. Classification Category: Location

The �rst category shown in Table 5.1 is concerned with the location of the uncertainty

source. Previous taxonomies [41, 162, 195, 263] already considered “where the uncertainty

manifests itself within the model” [195] but did not explicitly relate to an ADL. Since the

location of the source is one of the most important properties for design time modeling

49

5. Identi�cation and Classi�cation of Uncertainty Regarding Con�dentiality

Architectural Element Type: Describes the type or class of elements to which an

uncertainty can be assigned when considering its impact on a software system’s

con�dentiality. System-Independent, Nominal, Immutable

Component The uncertainty is assignable to software components. This represents

the nodes of a software system.

Connector The uncertainty is assignable to wires between components, or their

communication. This represents the edges between the nodes of a system.

Interface The uncertainty is assignable to interfaces of components. This represents

the contact point of nodes and edges in a software system.

External The uncertainty is assignable to external resources or their properties.

This represents annotating the nodes of a software system.

Behavior The uncertainty is assignable to behavior descriptions. This represents

specifying the behavior of nodes within a software system.

Table 5.2.: Uncertainty classi�cation regarding con�dentiality. Category: Architectural Element Type.

analysis, we de�ne four locations as inspired by the viewpoints of the PCM [207]. Com-

pared to existing taxonomies, this enables more precise description and mitigation because

we can model uncertainty and its relation to existing architecture elements.

The option system structure describes uncertainty in components and their assembly, which

becomes visible in structural views like component diagrams. The option system behavior
describes uncertainty in the communication, e.g., related to the handling of data within a

component or the communication between components. The option system environment
describes uncertainty in the system’s context including hardware resources and the external

situation. The option system input describes uncertainty in inputs provided by external

actors, e.g., people using the software system. Note that we distinguish between the input,

i.e., the user behavior, and the system behavior. This is due to the special role—and rights—

of humans with regard to con�dentiality, e.g., due to legal requirements like the GDPR

[73], and shall also help in collaboration with legal analysis [39]. Because the location is

de�ned on the level of an ADL meta model, it is system-independent and immutable. The

category is nominal, as its options only represent viewpoints without applicable order.

5.3.2. Classification Category: Architectural Element Type

Table 5.2 shows the second category Architecture Element Type. While the Location is on

the abstraction of the viewpoint (e.g., structure, or behavior), the Architecture Element Type
describes the concrete elements where the uncertainty arises. Similarly to the previous

category, the options are inspired by software architecture element types known from

ADLs like the PCM. We consider this to be the central category for further modeling

and analysis of uncertainty, as it speci�es a starting point to consider the e�ect of an

uncertainty source. Compared to existing classi�cations, we provide �ve concrete options

50

5.3. Classi�cation of Uncertainty Regarding Con�dentiality

Type: Describes how much is known about uncertainty and how it is described

on a scale from only being aware to having precise knowledge. This may change

with growing knowledge. System-Specific, Ordinal, Mutable

Statistical Uncertainty The uncertainty can be described with statistical means, e.g.,

related to the probability of certain outcomes.

Scenario Uncertainty The uncertainty can be described with distinct scenarios but

there is a lack of knowledge to apply statistical means.

Recognized Ignorance There is awareness of the uncertainty but no knowledge about

potential scenarios or lack of a description strategy. This is the

most general form of an ident�ed uncertainty source.

Table 5.3.: Uncertainty classi�cation regarding con�dentiality. Category: Type.

rather than only speaking of uncertainty within the model [195]. The need for such preci-

sion is supported by more recent approaches to classifying and propagating uncertainty

[2, 49] and also in the recent PSUM standard [184]. By understanding which elements

and viewpoints are a�ected, software architects can assess responsibilities and evaluate

mitigation methods.

The option component describes uncertainty assignable to software components, e.g.,

related to their allocation or other component-wide decisions or properties. The option

connector describes uncertainty assignable to, e.g., wires between components and thus

communication and its properties. The option interface describes uncertainty assignable

to interfaces, e.g., signatures, parameters, and return values. The option external describes

uncertainty assignable to hardware resources, e.g., servers, and external actors like users

of the system. Note that we renamed this category compared to the original publication

[104] to take into account that users also represent external entities. The option behavior
describes uncertainty assignable to behavior descriptions, e.g., algorithms, user behavior

and input, data processing, and persistence. This option also helps to underline the

di�erence between Architecture Element Type and Location: Although behavior descriptions

of users and the software system may be similar, the viewpoints of System Behavior and

System Input are di�erent. Both categories are orthogonal and cannot be replaced by each

other. The category is immutable and system-independent and can thus be reused across

architectural models. The category is nominal as there is no order between location or

element types.

5.3.3. Classification Category: Type

The third category is called Type and describes how much is known about the uncertain

in�uence as shown in Table 5.3. Other taxonomies [41, 195] only specify this in terms

of levels on a scale from knowledge to ignorance [11], which is too imprecise to classify

uncertainty for later mitigation. With the Type, we describe how much is known about the

uncertainty, based on the de�nitions by Walker et al. [263]. As discussed previously, we

51

5. Identi�cation and Classi�cation of Uncertainty Regarding Con�dentiality

Manageability: Describes to which extent the uncertainty can be managed, reduced,

or mitigated. This only provides a �rst estimate and may change with growing

knowledge. System-Specific, Ordinal, Mutable

Fully Reducible The uncertainty can be fully resolved with appropriate means that

mitigate its potential impact.

Partially Reducible The uncertainty is at least partially reducible which reduces the

potential impact severity or limits critical outcomes by appropriate

mitigation techniques.

Irreducible The uncertainty cannot be further reduced as there is no reason-

able way to achieve the required knowledge at this point in time.

Table 5.4.: Uncertainty classi�cation regarding con�dentiality. Category: Manageability.

do distinguish between known or unknown unknowns as this depends on the viewpoint

of the software architect and not the classi�ed uncertainty source.

Statistical uncertainty implies that the uncertainty is describable with statistical means, e.g.,

stochastic expressions, or probability distributions. Scenario uncertainty implies that the

uncertainty can be represented with distinct scenarios depending on the uncertain outcome

but without statistical means. Recognized ignorance only implies awareness of uncertainty

sources, without scenario-based or statistical means to describe their form. These options

can be ordered depending on the amount of knowledge and thus are ordinal. Having

statistical information enables more precise analysis results than just knowing scenarios—

which is still better than simple awareness. The category is system-speci�c and mutable.

During the software design and realization, more information may be gained, enabling a

more precise description of the uncertainty, e.g., because more statistical information is

collected or some scenarios can be excluded.

5.3.4. Classification Category: Manageability

The fourth category shown in Table 5.4 covers the manageability of uncertainty. Manage-
ability states whether we can control or reduce the impact of the uncertainty at design

time or are only aware of it [71]. Early identi�cation of potential threats to security-related

properties like con�dentiality is also required by Data Protection by Design [73, Art. 25]. We

do not consider the nature of the uncertainty [263] because the manageability is closer to

the uncertainty’s impact on the software system [71]. Representing the manageability on

a scale from reducibility to irreducibility is also supported by the PSUM standard [184].

Fully reducible uncertainty can be fully reduced by taking appropriate actions, e.g., an

ADD at design time, or comprehensive simulation. This can include “collecting additional

information until achieving full certainty” [184]. Partially reducible implies that full

certainty cannot be reached. Nevertheless, the uncertainty can be reduced by collecting

more information, or by applying scenario-based mitigation strategies, or system-wide

constraints and policies. Irreducible uncertainty cannot be further reduced, e.g., due to its

52

5.3. Classi�cation of Uncertainty Regarding Con�dentiality

Resolution Time: Describes the rough time span in the development process where

the uncertainty is usually expected to be fully resolved.

System-Independent, Ordinal, Immutable

Requirements Time The uncertainty is expected to be resolved as soon as the require-

ments are de�ned.

Design Time The uncertainty is expected to be resolved as soon as the software

system is designed.

Realization Time The uncertainty is expected to be resolved as soon as the software

system or parts of it are implemented and deployed.

Runtime The uncertainty is expected to be resolved as knowledge is gained

from testing and system operations, or not at all.

Table 5.5.: Uncertainty classi�cation regarding con�dentiality. Category: Resolution Time.

aleatory nature [184, 195]. Similar to the type category, this category is ordinal because the

options can be ordered. The classi�cation depends on the architecture under investigation

and the current knowledge. Thus, this option is system-speci�c and mutable. However,

many uncertainty types tend to be categorized similarly across architectures.

5.3.5. Classification Category: Resolution Time

The Resolution Time shown in Table 5.5 is based on the phases of software development

and can help to narrow down sources and responsibilities. Since we focus on the impact of

uncertainty on con�dentiality, we consider the expected full resolution time rather than

the emerging time [115, 195, 202, 255]. Also, we only include phases that are relevant from

the point of view of design time modeling and analysis.

Requirements time implies that the uncertainty resolves as soon as requirements are de�ned,

e.g., related to con�dentiality requirements or security policies. Design time implies that

the uncertainty resolves as soon as the system is designed, e.g., because the uncertainty is

related to ADDs, the system structure, or software components. Realization time implies

that the uncertainty resolves as the system or parts of it are implemented and deployed.

Here, we combine implementation and deployment as a distinction is not expedient from

an architectural point of view. Runtime implies that the uncertainty resolves at runtime,

e.g., because knowledge is gained from testing or dynamic analysis like monitoring or

pro�ling. This category depends on the uncertainty source and not on the system under

study and is thus system-independent and immutable. It is ordinal because we can order

the options along the phases of software development from requirements to runtime.

53

5. Identi�cation and Classi�cation of Uncertainty Regarding Con�dentiality

Reducible by ADD: Describes whether the uncertainty is resolvable or treatable by

an architectural design decision, i.e., a decision that speci�es or restricts a software

systems’s structure or behavior, thereby limiting the design space.

System-Independent, Nominal, Immutable

Yes The uncertainty can be reduced by making an architectural design decision.

No The uncertainty is not resolvable by taking an architectural design decision.

Table 5.6.: Uncertainty classi�cation regarding con�dentiality. Category: Reducible by ADD.

Impact on Con�dentiality: Describes the impact on con�dentiality requirements.

Initially, this only provides a �rst, system-independent estimate.

System-Specific, Ordinal, Mutable

Direct The uncertainty has a direct impact on the software system’s con�dentiality.

Indirect The uncertainty only has an indirect impact on the software’s con�dentiality

that usually relies on other uncertainties or other contextual factors.

None The uncertainty is expected to have no impact on con�dentiality at all.

Table 5.7.: Uncertainty classi�cation regarding con�dentiality. Category: Impact on Con�dentiality.

5.3.6. Classification Category: Reducible by ADD

Table 5.6 shows the category Reducible by ADD that speci�es whether the uncertainty

source can at least be partially mitigated by a design decision on architectural abstraction,

i.e., an ADD. Making the connection between ADDs and uncertainty explicit [159] helps

to prioritize, e.g., check whether multiple or critical uncertainty sources can be tackled by

a single decision. ADDs are seen as crucial aspect of software architecture [5, 124, 150].

The option Yes describes uncertainty which can be addressed on architectural abstraction

by making appropriate decisions, i.e., by designing the system in a way that the impact of

the uncertainty is (partially) mitigated This implies that the uncertainty can—and probably

should—be addressed in the architectural design and falls into the cone of uncertainty
[167]. The option No describes uncertainty that is not resolvable or treatable by taking an

ADD, e.g., because the uncertainty is outside the scope of the designed software system,

or cannot be properly addressed within the design process, e.g., due the behavior of a

third-party. An uncertainty that is not resolvable by an ADD does not imply a resolution

later than design time. The uncertainty could also exist due to a lack of knowledge or could

be addressed on a lower level than architectural abstraction—but not by an ADD. Both

categories are orthogonal. Reducibility is nominal, system-independent and immutable.

5.3.7. Classification Category: Impact on Confidentiality

The last two categories are used to quantify the impact of uncertainty on con�dentiality

requirements. Table 5.7 shows the category Impact on Con�dentiality. It represents a

54

5.3. Classi�cation of Uncertainty Regarding Con�dentiality

Severity of the Impact: Describes the severity if the uncertainty is not mitigated.

Initially, this only provides a �rst, system-independent estimate.

System-Specific, Ordinal, Mutable

High The uncertainty can cause a total loss of con�dentiality, e.g. due to a data breach.

Low The uncertainty can cause information leaks, but the damage is limited.

None The uncertainty is expected to cause no loss of con�dentiality at all.

Table 5.8.: Uncertainty classi�cation regarding con�dentiality. Category: Severity of the Impact.

�rst estimate on whether the uncertainty can directly impact con�dentiality or requires

additional conditions to result in con�dentiality violations.

The option Direct describes uncertainty with a direct impact that can void con�dentiality

even without taking other factors, decisions, or uncertainties into account, e.g., by directly

a�ecting input, processing, or storage of sensitive data like user data. The option Indirect
describes uncertainty that is related to ADDs, security measures, or other uncertainty

sources. The option None describes uncertainty without impact on con�dentiality, e.g., if

it is related to handling non-sensitive data or well-secured system parts or because the

uncertainty has no e�ect on any data processing at all, e.g., related to the color of a button.

Note that this category only describes the type of impact but not its severity. An indirect

impact can be as severe as a direct impact but is potentially even harder to identify. This

category only provides a �rst, mutable estimate and is highly system-speci�c. We consider

the options to be ordinal as they can be sorted from direct to no impact.

5.3.8. Classification Category: Severity of the Impact

To prioritize uncertainty with a potentially critical impact, we combine the previously intro-

duced impact type with its severity. Table 5.8 shows the last category of the classi�cation

that is named Severity of the Impact. This category is based on the con�dentiality impact

metrics of the open industry standard Common Vulnerability Scoring System (CVSS) [78].

We reuse the de�nition as it is broadly used, and known by security experts.

The option High refers to uncertainty that can cause the total loss of con�dential data or

access to restricted information. This can be the case because the uncertainty is either

related to highly sensitive data like certi�cates, encryption keys, or an admin password or

because the uncertainty is related to central security measures like input validation and

sanitization. The option Low refers to uncertainty that could cause the loss of restricted

information, but the damage is limited, e.g., because the input validation only has limited

e�ects due to insu�cient security policies. The option No refers to uncertainty where no

loss of con�dentiality is expected at all, e.g., because the uncertainty is related to parts of

a software system that do not deal with sensitive information. As stated in the previous

category, there is no clear dependency between an impact’s type and its severity. Only

uncertainty sources that have no impact on con�dentiality at all are also expected to have

no severity. Other than that, any combination of high or low, and direct or indirect can

55

5. Identi�cation and Classi�cation of Uncertainty Regarding Con�dentiality

happen. This category as well provides a �rst, mutable estimate that is system-speci�c.

Nevertheless, both categories help to estimate the potential impact and plan further steps

toward analyzing the uncertainty. The knowledge gained by this classi�cation can help in

clustering and prioritizing uncertainty and related ADDs. This category is ordinal.

5.3.9. Building on the Uncertainty Classification

In sum, our classi�cation provides eight categories that do not classify uncertainty in

isolation but also relate the uncertainty sources to software architecture and con�dentiality,

as discussed in Section 5.2. These categories help in the early understanding of uncertainty

sources and serve the discussion of software architects and security experts. We split the

categories into system-independent and system-speci�c. System-speci�c categories are

always mutable, as the knowledge about the uncertainty source can change over time.

� Finding: Uncertainty classi�cations are a well-suited entry point to under-

standing uncertainty sources. However, classi�cation can change over time when

more knowledge is gained or the system or environment changes. Some cate-

gories of the classi�cation depend on the architecture under study. Still, many

uncertainty sources tend to be categorized similarly across architectures.

This classi�cation represents the baseline for further modeling and analysis activities, as

outlined in Section 4.1. Many categories help in the early assessment of the criticality of an

uncertainty source, even without systematically analyzing the software architecture. How-

ever, to gain detailed insights on the impact of uncertainty and to identify con�dentiality

violations, architecture-based analysis is expedient. Here, we bene�t from the category

Architectural Element Type, which relates uncertainty sources to concrete element types of

software architectures and can be used to extend existing ADLs like the PCM.

� Finding: Centering an uncertainty classi�cation around the location of the un-

certainty source simpli�es the later modeling, analysis, and mitigation. Thus, we

see the category Architectural Element Type and its options Component, Connector,
Interface, External, and Behavior as central dimension of our classi�cation.

This �nding is supported by comparable approaches [2, 49] that analyze the impact of

uncertainty. Acosta et al. [2] de�ne the category Locus that describes the location of

uncertainty within the model and serves as starting point of uncertainty propagation. Due

to the importance of this category, we will use it throughout the remainder of this thesis

and refer to it directly, e.g., by speaking of Component uncertainty, Behavior uncertainty,

or External uncertainty.

56

5.4. Applying the Classi�cation to the Running Example

Category U1: User Input U2: Data Processing

Location System Input System Behavior

Architectural Element Type Connector Behavior

Type Scenario Uncertainty Scenario Uncertainty

Manageability Partially Reducible Fully Reducible

Resolution Time Runtime Design Time

Reducible by ADD Yes Yes

Impact on Con�dentiality Indirect Direct

Severity of the Impact High High

Table 5.9.: Exemplary classi�cation of the uncertainty sources U1 and U2 in the running example.

5.4. Applying the Classification to the Running Example

We illustrate the classi�cation introduced in the previous section by applying it to the

running example from Chapter 3. The running example, which shows a simpli�ed online

shop, comprises four uncertainties: The user input, data processing within the Online Shop
component, the deployment of the Database Service, and the provider trustworthiness of

the Cloud Service resource. In the following, we present one possible classi�cation using

the aforementioned classi�cation scheme. While some categories like the location are

system-independent, others like the severity regarding con�dentiality are system-speci�c

and are based on our interpretation of the running example. We provide our reasoning and

also explain alternative classi�cations. All classi�ed uncertainty sources are part of our

data set [98]. Additionally, they are listed in r ARC
3
N with the proposed classi�cation

2
.

Table 5.9 shows our classi�cation of the �rst two uncertainty sources, i.e., the user input

(U1) and the data processing (U2). The Uncertainty U1 about the user input is located in

the system input and can be annotated at a connector. We annotate the uncertainty to

a connector instead of a behavior description because it relates to the question of how

the user communicates with the system. In our discussion in Section 3.2, we enumerated

scenarios like normal or malicious behavior, thus we already reached the knowledge of

scenario uncertainty. With mitigation strategies like proper input validation, we can

at least partially reduce the uncertainty—more optimistic experts could even argue for

full reducibility. The uncertainty persists until run time when actual humans use the

system under study. Until then, it is reducible by appropriate design decisions like the

aforementioned input validation. The input on con�dentiality in our example is indirect

as it depends on the data processing, and thus, it depends on Uncertainty U2 whether

con�dentiality could be violated. If we do not have any means of input validation, the

impact could be direct. We classify the severity as high because con�dentiality cannot be

guaranteed under this uncertainty.

2
At the time of writing, r ARC

3
N is online available here: https://arc3n.abunai.dev/. Currently, the

uncertainty sources of the running example U1 – U4 are listed as #52, #35, #59, and #48.

57

https://arc3n.abunai.dev/
https://arc3n.abunai.dev/uncertainty/52
https://arc3n.abunai.dev/uncertainty/35
https://arc3n.abunai.dev/uncertainty/59
https://arc3n.abunai.dev/uncertainty/48

5. Identi�cation and Classi�cation of Uncertainty Regarding Con�dentiality

Category U3: Deployment U4: Provider Trustworthiness

Location System Structure System Environment

Architectural Element Type Component External

Type Scenario Uncertainty Scenario Uncertainty

Manageability Partially Reducible Partially Reducible

Resolution Time Realization Time Runtime

Reducible by ADD Yes Yes

Impact on Con�dentiality Direct Indirect

Severity of the Impact High High

Table 5.10.: Exemplary classi�cation of the uncertainty sources U3 and U4 in the running example.

The Uncertainty U2 about the data processing is located in the system behavior and can be

represented in a behavior description. Similarly to Uncertainty U1, we already provided

scenarios in Section 3.2, thus, it represents scenario uncertainty. The uncertainty about

the data processing is an uncertainty due to an open ADD as described by the cone of
uncertainty [167]. Thus, it is fully reducible already at design time. We classify the impact

on con�dentiality as direct and high, because improper processing directly and severely

a�ects the con�dentiality, e.g., because of missing validation or encryption.

Table 5.10 shows our classi�cation of the last two uncertainty sources, i.e., the deployment

(U3) and the provider trustworthiness (U4). The Uncertainty U3 about the deployment is

located in the system structure and can be annotated to a component that must be deployed.

In Section 3.1, we describe two scenarios of this scenario uncertainty, i.e., deployment on

premise, or in the cloud. In our interpretation, this uncertainty is only partially reducible

by a proper ADD at design time as it resolves at realization time, i.e., when the component

gets deployed after the architectural design of the software system. In our running example,

the impact on con�dentiality is direct and high. If the con�dentiality requirements demand

selected deployment locations due to legal requirements like the GDPR [73], any deviation

causes a con�dentiality violation.

The Uncertainty U4 about the trustworthiness of the cloud service provider is located in

the system environment and classi�ed as external uncertainty in the system’s context, see

Figure 5.1. Although we cannot control the provider’s behavior, we can describe scenarios,

i.e., trustworthy or not trustworthy behavior. With further knowledge or experience,

experts could quantify the probability of these scenarios to reach statistical uncertainty,

but in the running example, that is out of scope. With proper ADD, we can at least limit

the impact of this uncertainty. Thus, it is partially reducible. In our running example, the

impact on con�dentiality is high but indirect. The impact depends on the form of data

processing (U2) and also the deployment location (U3). Put simply, the cloud provider’s

trustworthiness does not a�ect the con�dentiality if nothing is deployed in the cloud.

In sum, this illustration shows how our classi�cation can be applied to better understand

uncertainty sources. Compared to other classi�cations, we focus on con�dentiality and

58

5.5. Representing Uncertainty in Data Flow Diagrams

thus provide appropriate categories for this purpose
3
. Describing the uncertainty in these

categories helps to better understand the relation and criticality of uncertainty sources.

In our running example, we can see the importance of proper data processing (U2) even

without applying automated architectural analyses. We also see the importance of choosing

the right deployment locations and can prioritize this ADD. Last, classifying uncertainty

always has some level of interpretation. Thus, the classi�cation of similar uncertainty

sources in other software systems could be di�erent. Moreover, our classi�cation could

change at a later stage, e.g., when enough knowledge about the uncertainty sources and

the probability of certain scenarios is gained for statistical analysis.

5.5. Representing Uncertainty in Data Flow Diagrams

Analyzing con�dentiality with Data Flow Diagrams (DFDs) [228, 236, 256] has been

proposed because “problems tend to follow the data �ow, not the control �ow” [239]. Thus,

Problem P3 is concerned with the representation of uncertainty in DFDs. We address this

by connecting DFDs to the Architectural Element Type category of our classi�cation. As

concluded previously in Section 5.3, this category is crucial for modeling and analyzing

uncertainty on architectural abstraction. This applies to ADLs like the PCM [207] as well

as to DFDs. The following section builds on the foundations about DFDs, DAGs, and the

uni�ed modeling primitives [235] presented in Section 2.5.

5.5.1. Mapping Uncertainty to Data Flow Diagrams

DFDs consist of processes, data �ows, �les, data sources, and data sinks—put simply,

di�erent types of nodes and edges. The uni�ed modeling primitives [235] extend this

notation and consist of nodes, pins, �ows, behavior and labels with their assignments.

Nodes represent structural elements of software systems, e.g., processes, stores, or external

entities. Pins represent their interfaces and �ows are used to connect multiple nodes

through their pins. Nodes have a de�ned behavior that assigns labels, e.g., based on labels

at the node’s input pins, constants, logical expressions or a combination of the above. In

our running example presented in Chapter 3, we can represent the data processing of the

Online Shop component as a process node. The node has one input pin for the incoming

data �ow from the user and one output pin for the outgoing, processed data �owing to

the Database Service. The deployment of the Online Shop component can be represented

as a On Premise label that is assigned to the process node. Last, the behavior of the data

processing node can be described using an assignment that assigns the label Encrypted
to all outgoing data to represent the encryption of all processed data. For details on the

uni�ed modeling primitives of DFDs, see Section 2.5 or the primary publication [235].

3
I discussed this question with Ra�aela Mirandola, who co-authored one of the investigated classi�cations

[195]. We concluded that there is no such thing as a best classi�cation—only appropriate and less

appropriate classi�cations for a speci�c purpose.

59

5. Identi�cation and Classi�cation of Uncertainty Regarding Con�dentiality

Uncertainty Type Modeling Primitives E�ect of the Uncertainty

Component Flow and node Existence and use of nodes

Connector Flow and assignment Existence and targets of �ows

Interface Flow and pin Existence and forms of pins

External Label Existence of a node’s labels

Behavior Assignment Existence of a node’s assignments

Table 5.11.: Mapping of the �ve uncertainty types to the uni�ed modeling primitives.

In Table 5.2, we describe the category Architectural Element Type which comprises the

options component, connector, interface, external, and behavior. Speaking in terms of

nodes and edges, these options represent uncertainty, e.g., within a node in the case of

component uncertainty, or at the contact point of a node and an edge in the case of interface

uncertainty. We build on this �nding and the fact that DFDs are a viable representation of

software architectures [226] to map the �ve uncertainty types to DFDs. Table 5.11 shows

the mapping of the �ve uncertainty types of the category Architectural Element Type to

the uni�ed modeling primitives.

Component uncertainty is assignable to software components that are represented by one

or multiple nodes in a DFD. Thus, uncertainty regarding components a�ects the existence

and use of nodes. In our running example, Uncertainty U3 about the deployment can be

represented as two alternative nodes where only one is in use.

Connector uncertainty is assignable to the communication between entities, i.e., to the

edges between nodes in a DFD. This a�ects the existence and targets of data �ows.

Additionally, this uncertainty a�ects how and which data �ows through an edge or data

�ow. In our running example, we model Uncertainty U1 about the user input as connector

uncertainty. Here, di�erent kinds of data, represented using assignments, can �ow into

the Online Shop component, e.g., invalid or malicious data.

Interface uncertainty is assignable to interfaces of components which are represented as

pins in a DFD. This a�ects the existence and forms of pins. Additionally, this uncertainty

a�ects the data �ows as an alternative interface can imply di�erent processing which is

represented as an alternative target of the data �ow. We do not model interface uncertainty

in our running example; an example would be alternative signatures of the Database Service
which can be swapped and o�er di�erent data processing.

External uncertainty represents annotations to nodes of software systems, e.g., components

or resources, which are represented as nodes in DFDs. This a�ects the assignment of labels

to nodes. In our running example, Uncertainty U4 about the provider’s trustworthiness is

an external uncertainty. In a DFD, the trustworthiness can be represented as a label that is

or is not annotated to all nodes that represent the processes of the provider.

Behavior uncertainty is assignable to behavior descriptions in architectural models which

translate to behaviors and assignments following the uni�ed modeling primitives [235].

In our running example, Uncertainty U2 about the data processing can be represented as

60

5.5. Representing Uncertainty in Data Flow Diagrams

alternative behaviors, e.g., just forwarding the data or applying validation or encryption.

In sum, all uncertainty types are applicable to architectural models and also in DFDs that

represent those models from the view of the data [234].

Following the uni�ed modeling primitives for DFDs by Seifermann et al. [235], we see how

the Architectural Element Type �ts to the available elements types. However, this is not

obvious: The �ve options of this category, i.e., the �ve uncertainty types, were collected

by investigating existing uncertainty classi�cations and ADLs. Nevertheless, applying a

bottom-up approach and starting with DFDs as underlying formalism yields the same �ve

uncertainty types to represent uncertainty sources in all available element types. The only

exception is the element type Behavior. However, this type only acts as a container in the

original de�nition of the uni�ed modeling primitives Seifermann et al. [235].

� Finding: The �ve uncertainty types described in the classi�cation category

Architectural Element Type are derived from existing uncertainty classi�cations

and Architectural Description Languages (ADLs) but also cover all elements of

the uni�ed modeling primitives for Data Flow Diagrams (DFDs). Although the

representations are di�erent, the �ve uncertainty types remain appropriate and

applicable. Thus, the results of the bottom-up and top-down approaches match.

5.5.2. Mapping Uncertainty to Directed Acyclic Graphs

In the following, we discuss how to include uncertainty as a �rst-class entity in DFDs,

following the proposal of Garlan [80]. We simplify the representation of uncertainty by

only considering DAGs. DAGs can be used as simple formalism to represent DFDs, see

Section 2.5. Put simply, processes, �les, data sources, and data sinks are denoted as vertices,

and data �ows are denoted as edges. We go into more detail when we include uncertainty

in architectural analyses—in this chapter, we remain at the conceptual level.

Looking at the a�ected modeling primitives in Table 5.11, we see that the former three

uncertainty types a�ect �ows while the latter two do not. Speaking of DFDs in terms of

vertices and edges of a DAG, this is no coincidence. Component uncertainty a�ects the

choice of vertices and, therefore, also a�ects the edges to these vertices, and connector

and interface uncertainty always a�ect the edges between vertices. In contrast, external

and behavior uncertainty directly a�ect the vertices, in terms of the uni�ed modeling

primitives, by a�ecting labels or assignments. They do not a�ect edges
4
.

Based on this observation, we divide the �ve uncertainty types into two groups, which

we call primary and secondary uncertainty. Primary uncertainty a�ects vertices and can

directly be annotated to a vertex with an uncertainty source. Secondary uncertainty a�ects

edges between vertices and can be annotated to an edge by adding alternative targets. We

4
For you, dear reader, this may seem like an obvious or insigni�cant insight: Some uncertainties a�ect

�ows and others a�ect nodes. But, among others, this �nding ultimately enabled us to create analyses

that scale orders of magnitude better than the state of the art.

61

5. Identi�cation and Classi�cation of Uncertainty Regarding Con�dentiality

input
search
details

process
request

customer1

query
data1

?

query
data2

database2database1

return
data1

return
data2

display
items

customer2

U4: Provider
Trustworthiness

U3: Deployment

?

Figure 5.2.: Data �ow of the running example as Directed Acyclic Graph (DAG) with annotated primary

and secondary uncertainty, denoted by question marks.

use the terms primary uncertainty and secondary uncertainty to avoid ambiguity. Direct

or indirect uncertainty, structural uncertainty, higher-order uncertainty, and �rst-order or

second-order uncertainty are already used in existing classi�cations [11, 195, 263].

Figure 5.2 shows the data �ow of viewing available items from the running example,

represented as DAG. We annotate the vertices and edges with primary and secondary

uncertainty. This example also illustrates how to transform a DFD into a DAG, as in-

troduced in Section 2.5. Cycles are replaced, e.g., the customer’s sending and receiving

activities are represented by separate vertices [53]. The data �ow of viewing available

items is a�ected by two uncertainty sources: The uncertain deployment (U3) and the

provider’s trustworthiness of the Cloud Service (U4). The deployment (U3) is classi�ed

as component uncertainty and thus falls into the group of secondary uncertainty. In this

example, this a�ects the �ow from the process request vertex to the query data vertices and

all following vertices that represent the Database Service. The left �ow from query data1
until return data1 represents the component being deployed on-premise, and the right

�ow represents the component being deployed in the cloud. Here, we have to additionally

consider the uncertainty about the provider’s trustworthiness (U4). This uncertainty

source is classi�ed as external uncertainty and thus represents a primary uncertainty. For

the sake of simplicity, we annotated this uncertainty only to the database2 vertex.

A DAG � = (+ , �) consists of vertices + and edges �. Vertices a�ected by primary
uncertainty form a subset +D ⊆ + . We do not further restrict the size of +D . The subset

is empty if no primary uncertainty exists, but it can also contain every vertex of + . In

the running example, +D = {database2}. Secondary uncertainty a�ects the edges of a

62

5.6. Uncertainty Catalogs to Support the Identi�cation

DAG. Without limiting the generality, we can assume that the DAG contains all known

alternative scenarios, e.g., the deployment on-premise and in the cloud. Then, each

secondary uncertainty can be represented as a subset �D8 ⊆ �. All secondary uncertainties

form a set �D = {�D1, . . . , �D= } with size |�D | = =. Similarly, we do not further restrict its

size but we require each edge to be contained at most once in a subset of a secondary

uncertainty, i.e., ∀4 ∈ �,∀8, 9 ∈ {1, 2, . . . , =} : (4 ∈ �D8 ∧ 8 ≠ 9) ⇒ 4 ∉ �D 9 . Otherwise,

we would allow for the interference of secondary uncertainties. In the running example,

�D1 = {process request → query data1, process request → query data2} and �D = {�D1}.

Already an example of this size demonstrates the bene�ts of including uncertainty as a �rst-

class entity in the design [80]. It helps to better understand the locations of uncertainty

sources and even to investigate simple uncertainty interactions [49]. In this example,

Uncertainty U4 is only relevant if the Cloud Service, which is represented by the right data

�ow, is selected as deployment in Uncertainty U3. We consider this fact in the classi�cation

of the uncertainty sources in Section 5.4. Here, we classify the impact of Uncertainty U3 as

direct and the impact of Uncertainty U4 as indirect as it depends on another uncertainty,

i.e., the Uncertainty U3. Representing uncertainty as primary and secondary uncertainty

in DAGs visualizes such e�ects. To this end, we actively manage a model with uncertainty

instead of modifying the model to exclude uncertainty [194].

� Finding: Including uncertainty sources as �rst-class entity in Data Flow Dia-

grams (DFDs) simpli�es their investigation, modeling, and analysis. Even simple

DFD representations like Directed Acyclic Graphs (DAGs) are su�cient to gain

insights about the direct and indirect e�ects of uncertainty. Here, we partition

the �ve uncertainty types of the classi�cation category Architectural Element Type
into two groups: Primary uncertainty directly a�ects vertices of DAGs while

secondary uncertainty a�ects edges between vertices.

5.6. Uncertainty Catalogs to Support the Identification

Although classifying uncertainty is necessary to understand the di�erences in nature and

type [195], it is not su�cient to enable the early identi�cation of uncertainty sources.

Our classi�cation shown in Section 5.3 and also model-based con�dentiality analyses

require the uncertainty sources to be known to the software architect who conducts the

assessment. Uncertainty sources unknown to the architect, can neither be represented

nor considered. We motivated this Uncertainty Awareness Problem (UAP) already at the

beginning of Chapter 5 and also in Problem P4.

We propose a solution based on collecting and relating uncertainty sources and providing

context information [103]. Figure 5.3 shows the metamodel of an Uncertainty Source
Catalog. The Uncertainty Source Catalog consists of Uncertainty Sources and Examples that

demonstrate these sources. Each source consists of a unique id, a name, a description,

and a literature reference for additional information about its origin. It can be related to

an arbitrary number of other sources and can have children which represent inheritance

63

5. Identi�cation and Classi�cation of Uncertainty Regarding Con�dentiality

* *

UncertaintySource

id: integer
name: string
description: string
reference: string

classification

1

child of

*

1

entries

*
related to

*

*

UncertaintySourceCatalog

UncertaintyClassification

location: Location
target: ArchitecturalElementType
type: UncertaintyType
manageability: Manageability
resolutionTime: ResolutionTime
reducible: ReducibleByADD
impact: ImpactOnConfidentiality
severity: SeverityOfeImpact

*

Example

description: string

visualization: Image

« enumeration »
Keyword

Trust, Database,
AccessControl, …

*

*

Figure 5.3.: Simpli�ed metamodel of the uncertainty source catalog. To simplify the illustration, we leave

out all types of the UncertaintyClassi�cation and refer to their comprehensive de�nition in Section 5.3.

between sources. To classify the source, it is described by anUncertainty Classi�cation using

the categories of our classi�cation [104], presented in Section 5.3. Last, sources reference

appropriate Examples that consist of a description and a visualization. Examples can be

used to explain more than one Uncertainty Source, and a source can be illustrated with

more than one example. Last, Uncertainty Sources can be further described by Keywords to

group uncertainty sources beyond their classi�cation.

The Uncertainty Classi�cation represents the application of our classi�cation to an uncer-

tainty source, as exempli�ed in Section 5.4. In our running example presented in Chapter 3,

Uncertainty U4 describes the unknown trustworthiness of the cloud service provider. The

Uncertainty Classi�cation shows the selected classi�cation options, e.g., the location of the

system environment, or the manageability of partially reducible, see Table 5.10. Besides

referencing the classi�cation, the Uncertainty Source has an id, a name, a description,

and literature references for further information [104, 202]. In our initial population of

the catalog [98], we use the following example to explain the source: “In a cloud-based

application, the uncertainty about the deployment provider’s trustworthiness involves

questioning whether the chosen cloud service ensures data security and system availability

or whether or not data is made available to third parties such as governmental institutions.”

The Uncertainty Source is tagged with the keyword Trust.

In addition to its own properties, classi�cation, examples, and keywords, Uncertainty
Sources can have relations and parent uncertainties. In our example, Provider Trustwor-
thiness is a child of the uncertainty source Unpredictable Environment [202], and related

to uncertainty sources of our initial population regarding encrypted communication,

component trustworthiness, and deployment location. This is illustrated in Figure 5.4.

Combined, this information provides comprehensive context knowledge for software

architects, raises awareness, and simpli�es the assessment. By attaching this information

and also linking related uncertainty types, we address the organizational challenges of

64

5.6. Uncertainty Catalogs to Support the Identi�cation

Provider
Trustworthiness

Unpredictable
Environment

Component
Trustworthiness

Communication
Encryption

Deployment
Location

Component
Behavior

Figure 5.4.: Uncertainty source about the “Provider Trustworthiness” with its parent uncertainty source

“Unpredictable Environment” and related uncertainties.

collecting uncertainty sources and enable to search and �lter for uncertainty sources. Addi-

tionally, there are no space limitations regarding examples, visualizations, and discussions.

To demonstrate this, we enriched 51 uncertainty sources from multiple classi�cations [104,

202] with context information, examples, and also uncertainty relations and inheritance

as part of our data set [98]. In sum, this addresses Problem P4 and enables non-experts to

reuse expert knowledge on uncertainty sources.

Note that the current state of research cannot create a generally applicable and compre-

hensive answer to identifying all possible uncertainty sources [273]. However, processing,

persisting and relating information about uncertainty sources provides a pragmatic �rst

step, especially for practitioners [103]. To this end, approaches like this uncertainty source

catalog are steps towards also addressing unanticipated changes that are not totally un-

foreseeable [80]. Following the discussion about the orders of uncertainty [11], we hereby

lower the order of uncertainty from the third to the second order. Although there can be a

lack of awareness of an individual, we provide means to identify some uncertainty sources,

which previously were unknown to this individual [195].

� Finding: Knowledge about uncertainty sources can be reused across software

architectures. Extending the classi�cation of uncertainty sources with descrip-

tions, examples, keywords, and relations between uncertainty sources helps in

the identi�cation and simpli�es the assessment. This reuse of expert knowledge

addresses the Uncertainty Awareness Problem (UAP) and helps to deal with the

ever-present challenge of unanticipated change.

65

5. Identi�cation and Classi�cation of Uncertainty Regarding Con�dentiality

Figure 5.5.: Screenshot of the detail view of our tooling r ARC
3
N. It shows the description, explanation,

and classi�cation of the uncertainty source regarding the trustworthiness of a resource provider.

5.7. A Collaborative Approach for Uncertainty Catalogs

Our classi�cation presented in Section 5.3 provides the terminology to understand and

discuss uncertainty sources, and the catalog meta model presented in Section 5.6 simpli�es

the identi�cation of relevant uncertainty sources and sharing of knowledge. However, to

be applicable, knowledge reuse must be simpli�ed and should not be limited to individuals

or institutions. With Problem P5, we stressed the importance of an open and publicly

available catalog of uncertainty sources. Collecting uncertainty sources only within

publications [202] or data sets [104] lacks reusability, extensibility, and availability. To

address this, we propose a web-based catalog approach in the following.

66

5.7. A Collaborative Approach for Uncertainty Catalogs

We realized our meta model and catalog approach as rARC3N, which stands for Research
archive for Software-Architectural Uncertainty5

. Our tooling revolves around a table of

uncertainty sources and their classi�cation which allows for quick navigation, search, and

�ltering by keywords or classi�cation categories. By selecting a source, software architects

can see its description, examples, related sources, and its classi�cation. Because there is

no space limitation, the selected options of the classi�cation can be explained in detail, as

shown in Figure 5.5. We also provide further explanation of all classi�cation categories

and relate known uncertainty sources similar to Figure 5.4. Software architects can quickly

navigate through uncertainty sources, examples, and classi�cation. Last, the full catalog

can be downloaded in a machine-readable JSON format.

All four uncertainty sources of our running example are contained in the initial population

of our catalog. Thus, security experts could become aware of these uncertainty sources by

using our tool support. To identify the uncertainty of the provider’s trustworthiness (U4),

they could search for trust-related uncertainty sources or navigate to this uncertainty

by its related uncertainty sources, e.g., the unpredictable environment or the encrypted

communication. They could even identify the uncertainty by investigating the open

deployment decision with Uncertainty U3 as both uncertainty sources are related.

We chose a web-based approach to minimize the e�ort required to set up and use the

tooling. We use a GitHub [90] git repository as the backend for adding new uncertainty

sources as well as discussions between participants. New uncertainty sources can be

added directly from within our tool support and are then retrieved by using the open

GitHub API [90]. This enables lightweight and openly accessible storage of all required

information. We choose GitHub to minimize the risk of link decay, which is especially

prominent on institutional websites [91]. The information retrieval is automated using a

DevOps pipeline based on GitHub Actions [90]. Once the information has been updated,

our tooling works completely autonomously and can be self-hosted or used locally. This

enables the easy integration of other information sources and also simpli�es switching to

other platforms like GitLab.

Our tooling r ARC
3
N collects uncertainty sources in a central place instead of relying

only on publication-based collections which simpli�es the collaboration of researchers and

practitioners. We foster two types of collaboration: r ARC
3
N bene�ts the communication

between di�erent roles with di�erent knowledge, e.g., security experts and software

architects. It also bene�ts peers with the same role as a shared catalog for exchange

and documentation. New uncertainty sources can be proposed by everyone based on

the open-source GitHub repository. All required information is stored as part of the tool

support and can be downloaded in third-party analyses. In sum, this approach provides

an easy-to-use, extensible, and open collaborative approach to address Problem P5. Note

that we do not claim comprehensiveness regarding uncertainty sources with this catalog.

We do also not claim long-term availability over decades. Nevertheless, this approach is a

proposal towards an open and available catalog to foster collaboration [251].

5 r ARC
3
N is open-source and available online: https://arc3n.abunai.dev/. It is also archived in our

data set [98]. Any similarities by name with extensively praised jewels are completely coincidental.

67

https://arc3n.abunai.dev/

5. Identi�cation and Classi�cation of Uncertainty Regarding Con�dentiality

5.8. Assumptions and Limitations

In this section, we discuss the assumptions and limitations of the identi�cation and

classi�cation approaches presented in this chapter. We partition these into �ve groups:

The focus on con�dentiality, the use of software architecture-based approaches at design

time, the lack of automated analysis, the cooperation required for collaborative approaches,

and the ever-present challenge of unanticipated change.

Focus on confidentiality First, we only focus on con�dentiality as a central quality at-

tribute of our classi�cation. While this reduces the generalizability, we do this intentionally

to obtain more precise results for the modeling and analysis of uncertainty sources. As

demonstrated, the focus on con�dentiality enables the connection of the uncertainty types

to DFDs, which simpli�es later data �ow-based con�dentiality analysis. Additionally, we

assume that the concepts can at least be applied partially to related quality attributes like

integrity [36, 233]. Using the location as a central classi�cation category and representing

uncertainty in �ow diagrams were the inspirations for other work [2, 49]. Nevertheless,

we do not claim generalizability beyond con�dentiality.

Using the so�ware architectural abstraction Similarly, we limit ourselves to software-

architectural uncertainty, as de�ned in Section 5.2. This was also an explicit decision due to

�t existing modeling [207, 235] and analysis [234, 236, 256] approaches for con�dentiality.

Still, most categories are general enough to be used even without explicit models, e.g.,

Type, Manageability, or Resolution Time. We assume that software architects and security

experts already have enough knowledge about the software system to assess uncertainty

at design time. Such assumptions exist in many architecture-based analyses [233, 264].

Transitive impact of uncertainty Third, the approaches for identi�cation and classi�-

cation provide no assistance for the transitive impact of uncertainty. The uncertainty

source is often not the location where the uncertainty a�ects con�dentiality and where it

can be mitigated. We presented the relation of uncertainty sources and their impact in

Section 5.2, e.g., with the transitive impact of the Uncertainty U1 about the user input to

the Database Service shown in Figure 5.1. However, to face such propagation e�ects, a

precise description of uncertainty—such as our classi�cation—is required in the �rst place.

Additionally, the modeling and analysis of uncertainty for design-time con�dentiality

analysis require tool support as “detecting con�dentiality issues manually is not feasible”

[234]. We will address this limitation in the following chapters.

Collaboration for joint uncertainty catalogs Our web-based approach r ARC
3
N repre-

sents a publicly available uncertainty catalog. Here, we assume that researchers and

practitioners alike bene�t from sharing knowledge about uncertainty sources, as known

from legal sciences [251]. However, companies or institutions could try to keep the infor-

mation private, especially regarding sensitive topics like security. The lack of willingness

68

5.9. Summary and Outlook

to cooperate limits the bene�ts of a shared knowledge base. Nevertheless, r ARC
3
N could

also be used in a closed environment but with limited usefulness.

Unanticipated change We do not claim to have solved the challenge of unanticipated

change. A recently published research agenda [273] names the challenge of end-to-end

approaches that can operate in changing real-world conditions. We do not provide a

solution to such unanticipated change. However, our identi�cation approach represents a

pragmatic approach towards reducing the e�ect to the individual by sharing knowledge

about them, i.e., making them known. In sum, our catalog approach can be seen as a �rst

step or a potential part of a comprehensive solution.

5.9. Summary and Outlook

In this chapter, we presented our classi�cation of software-architectural uncertainty and our

approach to address the identi�cation of uncertainty. This represents our �rst Contribution

C1 and provides the answer to ä Research Question 1.

First, we presented our understanding of the relation of uncertainty, con�dentiality, and

software architecture to address Problem P1. We highlighted the distinction between

an uncertainty source and its impact. The former represents the origin of uncertainty

in the software system or its environment while the latter represents the actual location

of the impact of the uncertainty source on con�dentiality. We also related the notion of

uncertainty to the terminology known from Self-Adaptive Systems (SASs) [272], the cone
of uncertainty [167], and Architectural Design Decisions (ADDs) [124, 150].

Based on this discussion, we investigated existing uncertainty classi�cations [41, 162,

195, 202, 263] and de�ned our own classi�cation tailored to the impact on con�dentiality,

thereby addressing Problem P2. Our classi�cation contains 8 categories with a total of 27

options. They classify uncertainty in categories like location, manageability, or resolution

time. The central category is the Architectural Element Type as this category describes

where to annotate an uncertainty source in architectural models. Last, we illustrated the

classi�cation using our running example.

Building on this classi�cation, we addressed Problem P3 of representing uncertainty as a

�rst-class concern in DFDs. Our �rst �nding was that the �ve uncertainty types of the

aforementioned classi�cation match the model elements of DFDs. We then partitioned the

�ve uncertainty types category into primary and secondary uncertainty. This enables a

simple and straightforward representation of uncertainty in DAGs, which can be used to

represent DFDs. Primary uncertainty a�ects vertices, and secondary uncertainty a�ects

edges between vertices.

Afterward, we extended the classi�cation and presented a meta model for uncertainty
source catalogs, which addresses Problem P4. We proposed the enrichment of classi�ed

uncertainty sources with descriptions, keywords, and examples. Additionally, uncertainty

69

5. Identi�cation and Classi�cation of Uncertainty Regarding Con�dentiality

sources are usually not independent [50] and thus can have relations and inheritance. By

collecting such information in a central archive, the UAP can be partially addressed.

Last, we presented our tooling r ARC
3
N to create an open catalog of uncertainty sources

and to address Problem P5. Our initial population contains 51 uncertainty sources with

descriptions, examples, and relations. It is publicly available under an open-source license

and can help to identify relevant uncertainty sources that were previously unknown to

security experts. By combining classi�cation and identi�cation, we support the �rst two

activities presented in Section 4.1.

ä Research Question 1 asked about the identi�cation, description, and classi�cation of

software-architectural uncertainty regarding con�dentiality. Our comprehensive answer

to this question comprises the inspection of existing classi�cations and the de�nition of a

novel classi�cation regarding the impact of uncertainty on con�dentiality. We derive �ve

uncertainty types that �t DFDs, which are often used to analyze con�dentiality [235]. By

applying these uncertainty types to DAGs, we close the gap between uncertainty sources

and con�dentiality. Furthermore, our classi�cation provides the means to describe and

discuss uncertainty. By extending the classi�cation to form tool-supported uncertainty

source catalogs, we ultimately also address the question of description and identi�cation.

The bene�ts of our Contribution C1 include precise terminology to discuss and understand

uncertainty regarding con�dentiality. This supports both software architects and security

experts in modeling and analyzing software-intensive systems. As proposed in Chapter 4,

we do not require an additional uncertainty expert role, as the required knowledge is

contained in the classi�cation and the uncertainty source catalog. Here, our tooling

rARC
3
N presents a useful starting point. By identifying and assessing uncertainty sources

early, the reasoning and prioritization of ADDs is simpli�ed and costly backtracking is

minimized. This is especially true regarding uncertainty interactions [50], which represent

uncertainty impacts that are particularly hard to �nd and mitigate. Last, our classi�cation

lays the foundations for further integration of software-architectural uncertainty in the

architecture-based analysis of con�dentiality.

We will revisit the idea of representing uncertainty sources and their impact as �rst-class

entities in DFDs and DAGs in the following chapters. In # Chapter 6: Uncertainty
Propagation to Enable Uncertainty Impact Analysis, we discuss uncertainty propa-

gation in architectural models and DFDs alike. This will help to better understand the

actual impact of uncertainty sources on con�dentiality beyond the early assessment using

our classi�cation. This also addresses the limitation of the sole classi�cation regarding the

transitive impact of uncertainty. It also de�nes the foundations for later uncertainty-aware

analysis in# Chapter 7: Uncertainty-Aware Data Flow Analysis to Identify Con�-
dentiality Violations. Here, we will also see again the distinction between primary and

secondary uncertainty and how it can be used to speed up data �ow analysis. Last, the

evaluation of this chapter will be presented in # Chapter 9: Evaluation.

70

5.10. In Simpler Words

5.10. In Simpler Words

In this chapter, we focus on two things: The classi�cation and the identi�cation of uncer-

tainty. This is an important �rst step because we �rst need to better understand the threat

to con�dentiality, which is uncertainty. We de�ne clear terms for software architects and

security experts in the form of a classi�cation. Afterward, we show how to extend this

classi�cation in order to identify more uncertainty sources.

A classi�cation helps to understand important properties of a classi�ed element—in our

case, uncertainty. Many researchers already de�ned many classi�cations of uncertainty.

However, they do not �t our purpose, relating uncertainty to con�dentiality. Thus, we

de�ne our own classi�cation based on the existing ones. We propose di�erent categories

like the location, the manageability, or the severity of the impact. For instance, the

uncertainty regarding user behavior can be located in the system input as users operate a

software system. We cannot control their input but we can try to think of possible behavior

in advance and thus partially reduce this uncertainty. If the user behaves maliciously

and tries to attack our system, the severity of the impact can be high. In total, we de�ne

eight categories like these three. They help us to better understand uncertainty, and group

uncertainty sources together. We apply this knowledge to data �ow diagrams, a diagram

type that is often used to reason about con�dentiality. By connecting this uncertainty

terminology to data �ow diagrams, we lay the foundations for the automated analyses we

will present in the following chapters.

To help software architects and security experts even more, we also discuss how to identify

uncertainty sources. If you had not read the previous paragraph, you might not have

known about the uncertainty of the user’s behavior. This is the nature of unexpected

changes—often, you do not even know that you do not know about the change. But now

that I told you, you know about the uncertainty of user behavior. You still do not know

how the user will behave in the end, but you are at least aware of the issue. We present a

software tool that helps to collect uncertainty sources and make software architects and

security experts aware of them. This also helps to connect di�erent uncertainty sources,

as they often have relations. For instance, if we apply input validation to address the

uncertain user input, we can address this uncertainty. But if we do not know how this

input validation works and whether it always works correctly, the validation itself is an

uncertainty source. Then, both uncertainties are connected—this is called uncertainty
interaction. Uncertainty interactions are particularly dangerous and hard to �nd. Our

contribution regarding the identi�cation and classi�cation can also help here.

71

6. Uncertainty Propagation to Enable
Uncertainty Impact Analysis

In this chapter, we present the second Contribution C2. This contribution covers the

third activity shown in Section 4.1, i.e., the propagation of uncertainty. We present means

to model and analyze uncertainty in software architectures in order to enable the early

assessment of the potential impact of uncertainty on con�dentiality.

As motivated throughout this thesis, uncertainty can quickly become critical, especially

regarding security-related properties like con�dentiality. For proactive decision-making

as implied by Privacy by Design [224] and adaptation to a changing environment, un-

certainty should be analyzed as early as possible. This requires means to model and

analyze uncertainty that build on existing Architectural Description Languages (ADLs)

and do not require extensive knowledge or modeling and analysis e�ort. As implied by the

term what-if analysis, we aim to quickly understand the potential impacts of uncertainty

without having to re-model—or even worse, re-implement—a software system.

Much is yet unknown about potential uncertainty sources and their e�ects [99], e.g.,

in early design due to abstract requirements and open decisions [167], or in systems of

systems because of unpredictable behavior and complex dependencies and interactions [50,

190]. Here, uncertainty in a software system (e.g., component choices) or its environment

(e.g., user input) can void assumptions [2]. Design time con�dentiality analysis can help

to identify potential con�dentiality violations early [236], but is either not suited to deal

with uncertainty [233], or requires to much additional modeling e�ort [37, 266]. This lack

is supported by the literature. Hezavehi et al. [115] recently found a “lack of systematic

approaches for managing uncertainty” [115]. This also becomes visible in a recent study

by Troya et al. [255], which highlights the opportunity of providing useful notations and

tool support to model and analyze uncertainty.

We aim to address this problem with a tool-supported approach for Uncertainty Impact
Analysis regarding con�dentiality. Based on software-architectural modeling, we propa-

gate uncertainty sources through the software system to identify impact locations that

subsequently can be analyzed and mitigated accordingly. This approach �lls the gap

between identifying uncertainty sources and understanding their actual impact on a sys-

tem’s con�dentiality by using the information of the software’s architecture. This also

addresses the limitation of understanding the transitive impact of uncertainty described

in Section 5.8. To achieve this, we build upon the concept of architecture-based change

impact analysis [110, 210, 211]. Such analyses trace changes, e.g., replacing components or

altering interfaces, and predict the impact on the software system. To analyze the impact

73

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis

of uncertainty on con�dentiality, we combine this structural propagation with the propa-

gation along extracted data �ows. This enhances the precision of the impact, especially

regarding con�dentiality, as “problems tend to follow the data �ow, not the control �ow”

[239]. By calculating the impact of uncertainty, software architects can identify potential

issues without laborious modeling and analysis of architectural variations [101, 265].

As de�ned in Section 5.2, we stress the importance of distinguishing an uncertainty

source and its impact. Only considering uncertainty sources rather than their impact

impedes precise mitigation. Moreover, similarly to con�dentiality analysis [234], manual

propagation of uncertainty is not feasible, especially in large systems of systems. Thus, the

provided concepts need tool-supported modeling and analysis to aid software architects.

Here, we build on the classi�cation of uncertainty, which was presented in the previous

chapter, see Chapter 5. We summarize this research concern of uncertainty propagation

and impact analysis in the second research question:

ä Research Question 2: How to propagate classi�ed uncertainty sources based

on architectural modeling to predict their impact on a system’s con�dentiality?

We also present one extension to this work. As acknowledged in Section 5.5, sources of

uncertainty are rarely independent, and their interactions can a�ect the overall system in

subtle and unpredictable ways [52]. Similarly to the discussion presented in Chapter 5, this

Uncertainty Interaction Problem (UIP) demands representing uncertainty as a �rst-class

concern. To consider heterogeneous uncertainty sources, i.e., uncertainty which di�ers

in representation and nature, and their propagation and interaction, we generalize the

propagation concept to de�ne Uncertainty Flow Diagrams (UFDs) [49]. Building on our

�ndings on Data Flow Diagrams (DFDs) and uncertainty propagation presented throughout

this thesis, we present an initial, yet more general approach to propagate uncertainty that

is not limited to con�dentiality. This extension positions our work in the research area of

Self-Adaptive Systems (SASs) [273] and shows further application possibilities.

The remainder of this chapter is structured as follows: First, we present the problem

statement. We discuss how to represent uncertainty in architectural models using the ADL

Palladio Component Model (PCM) [207]. Afterward, we present uncertainty propagation

separately for architectural models and DFDs and then combine these �ndings to de�ne a

joint uncertainty impact analysis regarding con�dentiality. Building on that, we combine

the analysis with the identi�cation approach presented in Section 5.6, to address the

Uncertainty Awareness Problem (UAP) of uncertainty impact analysis. Last, we generalize

the propagation concept to de�ne UFDs. We close the chapter with a discussion of

assumptions and limitations and give a summary and an outlook.

� Literature: This chapter is based on the following (co-) authored publications:

[ACM MODELS-C 2022], [IEEE/ACM SEAMS 2023], [IEEE/ACM SEAMS 2024],

[ACM/IEEE MODELS-C 2024]

74

6.1. Problem Statement

6.1. Problem Statement

We summarize the problems P1 – P4 addressed by Contribution C2. Finding solutions to

these problems helps to provide a comprehensive answer to ä Research Question 2.

P1: Representation of uncertainty in architectural models In order to consider uncer-

tainty in software architecture, we require means to describe uncertainty in the architec-

tural abstraction. We bene�t from the restriction to software-architectural uncertainty of

our classi�cation [102] that can be used as a baseline. Nevertheless, we need to relate the

di�erent uncertainty types to elements of the software architecture [255]. The representa-

tion of uncertainty in architectural models can be realized by annotating uncertainty to

ADLs like the PCM [207]. Last, we need to understand the representation of the impact of

uncertainty both in PCM and DFDs.

P2: Propagation of uncertainty for uncertainty impact analysis We require rules to prop-

agate uncertainty in all models that are considered in design time con�dentiality analysis.

This includes architectural models described with ADLs and also DFDs. For both repre-

sentations, we need to understand how uncertainty can impact con�dentiality, and how

this impact can be calculated. We also need to relate both representations to de�ne a

comprehensive uncertainty impact analysis. Last, analysis automatization is required as

manually propagating uncertainty in large software systems is not feasible.

P3: Identifying uncertainty for uncertainty impact analysis Similar to other architecture-

based analyses under uncertainty [101, 266], uncertainty impact analysis su�ers from the

Uncertainty Awareness Problem (UAP). We cannot assume that software architects are

aware of all relevant uncertainty sources. We can also not assume that software architects

have enough expertise to annotate the correct uncertainty sources in the architectural

model. These shortcomings severely limit the accuracy of the uncertainty impact anal-

ysis as only identi�ed and correctly annotated uncertainty sources can be propagated.

Addressing this problem also helps to move towards end-to-end approaches [273].

P4: Uncertainty propagation to address uncertainty interactions The Uncertainty Inter-

action Problem (UIP) can be addressed using uncertainty propagation. This requires ap-

propriate notations to follow the �ow of uncertainty in software systems. These notations

need to support not only homogeneous uncertainty but also heterogeneous uncertainty of

di�erent type and nature. Another key requirement for such a notation is that it should be

able to capture how uncertainty propagates both horizontally, i.e., within the same level

of abstraction, and vertically, i.e., across di�erent levels of abstraction [50].

75

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis

Database ServiceOnline Shop

process request query data

return data display items

process purchase store data

Database

« interface »
DatabaseService

Items queryInventory (Request request)
void storePurchaseData (Data data)

«requires» «provides»

Figure 6.1.: Simpli�ed mapping of the components of the running example to a Data Flow Diagram (DFD).

6.2. Representing Uncertainty in Architectural Models

In order to enable architecture-based uncertainty impact analysis regarding con�dentiality,

we �rst need to understand the representation of uncertainty sources and their impact both

in architectural models and DFDs. Here, we build on the �ndings presented in Section 5.5

about representing uncertainty sources in DFDs and Directed Acyclic Graphs (DAGs). In

this section, we discuss the relation of software architectural models and DFDs and the

role of uncertainty in both representations of a software system. Afterward, we de�ne a

meta model for representing the propagated uncertainty impact in DFDs and derive which

elements of a software architecture can be annotated with uncertainty sources. We build

on the PCM as it represents a mature and widely-used ADL. Nevertheless, the �ndings

of this section are also applicable to other representations of a software architecture like

Uni�ed Modeling Language (UML) diagrams [186]. This addresses our �rst Problem P1
about the representation of uncertainty in architectural models.

6.2.1. Modeling Uncertainty Sources and Uncertainty Impacts

We start by explaining the relation of a high-level structural view like a PCM component

repository model and DFDs using our running example. Figure 6.1 shows the simpli�ed

mapping of the two components Online Shop and Database Service, the interface that

76

6.2. Representing Uncertainty in Architectural Models

origin
1

*

* 1..*Propagated
Uncertainty Impact

* 1Annotated
Uncertainty Source

Element of an
Architectural Model

Element of a
Data Flow Diagram

origin
1

*

Figure 6.2.: Simpli�ed view on the relation of software-architectural uncertainty sources, their propagated

impact, software architectural models, and Data Flow Diagrams (DFDs).

connects those components, and a DFD showing the data �ows of querying and purchasing

items. This mapping has been precisely de�ned by Seifermann [233], which includes the

automated extraction of DFDs from the PCM.

The components of Figure 6.1 are connected by an interface and additionally encapsulate

their own behavior. A PCM component can have multiple intended purposes, e.g., the

Online Shop component is used to process item requests and to process purchases. This

is represented in the signatures of an interface and also becomes visible when looking

at the DFD. Additionally, a single interface signature’s behavior can be represented by

multiple DFD nodes, e.g., querying items with the signature queryInventory involves the

query data, Database, and return data nodes. Last, some information of the architectural

model is not mapped to DFDs, e.g., every information related to the details of signatures

and interfaces. We �nd that there is no one-to-one mapping between an architectural

model of the PCM and a DFD. Both models can represent the same software system but

show di�erent concerns and abstraction levels.

When we discussed the di�erence of uncertainty sources and the impact of uncertainty on

con�dentiality, we stated that the locations can di�er. Figure 5.1 showed an uncertainty

source annotated to the customer using the Online Shop and its potential impact to the

Database Service. This relation also becomes visible in this mapping, illustrated in Figure 6.1.

An uncertainty source in the input of the process request node could a�ect the query data
node and transitively a�ect all other nodes in the �ow, starting with the Database. Put

simply, unspeci�ed user input could lead to con�dentiality violations in all of these nodes.

We �nd that a single uncertainty source can impact multiple nodes of a DFD and that the

representation of DFDs is suited to express this impact.

These �ndings are summarized in Figure 6.2. An element from the architectural model

can be represented by zero, one, or many elements of DFD. Our example shows all three

cases, as discussed previously. When extracting DFDs from PCM with the mapping of

Seifermann [233], every DFD element can be traced back to one originating element of

the software architecture.

Software architects annotate identi�ed uncertainty sources to the architectural model as

this enables them to stay on the architectural abstraction [97]. Although every uncertainty

source is annotated to exactly one element of the software architecture, there is no limit

77

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis

how many uncertainty sources can be annotated to a single element. Furthermore, there

also can be elements without any annotated uncertainty, either because it has not yet been

identi�ed, or because it is currently not relevant. See the procedure of uncertainty-aware

analysis described in Section 4.1 for more details.

As shown in the discussion in Figure 6.1, a single annotated uncertainty source can have

multiple impact locations. Similarly to the relation of architectural elements and DFD

elements, every impact can be traced back to one originating uncertainty source. Put simply,

once the con�dentiality has been violated, software architects can trace the violation back

to its cause, e.g., an overlooked uncertainty source. A propagated uncertainty impact

a�ects at least one DFD element—or more, as seen in the running example. Nevertheless,

not every element of a DFD has to be impacted by uncertainty.

This relation of uncertainty sources, their propagated impact, architectural models, and

DFDs lays the foundation for all further discussions in this chapter. Note that this is only

one view on the relation of these concepts. For instance, one could argue that a single

uncertainty source can a�ect multiple elements of an architectural model
1
. For the sake of

consistency, we are keeping this view for the remainder of this chapter.

� Finding: Architectural models are a suitable representation to be annotated

with software-architectural uncertainty sources and Data Flow Diagrams (DFDs)

are suitable to represent their impact on con�dentiality. Multiple DFD elements

can represent a single element of the architectural model, and similarly, multiple

elements of a DFD can be impacted by a single uncertainty source.

6.2.2. A Meta Model of the Uncertainty Impact in Data Flow Diagrams

In Section 5.3, we de�ned our classi�cation of uncertainty that is tailored to con�dentiality.

The category Architectural Element Type is used as the primary category for annotating

architectural models. It o�ers �ve uncertainty types, i.e., �ve possible target elements

of uncertainty. Component uncertainty represents uncertainty in software components,

connector uncertainty represents uncertainty in the wiring between components, interface

uncertainty represents uncertainty in interfaces, external uncertainty represents uncer-

tainty in resources, or users, and behavior uncertainty represents uncertainty in behavior

descriptions. See Table 5.2 for details on the classi�cation and Table 5.11 for details on the

relation of these options and DFD elements. We do not limit our modeling to a certain

type of uncertainty, e.g., environmental uncertainty [37], or structural uncertainty [266]

in the following, but aim to support all �ve uncertainty types.

While these uncertainty types and their associated software-architectural elements are

su�cient to document uncertainty sources, additional e�ort is required to also represent

1
When I came back from SEAMS ’23 in Australia where I presented this work, I had this very discussion

with Shmuel Tyszberowicz. I conclude that allowing one uncertainty source to only a�ect a single element

does not limit the generality as there could be in�nite uncertainty sources that a�ect di�erent elements

and that are related and analyzed together.

78

6.2. Representing Uncertainty in Architectural Models

Assignment

in out

BehaviorLabel

Pin

src dst

src

dst
Flow

Node

in

out

Component
Uncertainty

Impact

 Connector
Uncertainty

Impact

Interface
Uncertainty

Impact

Behavior
Uncertainty

Impact

External
Uncertainty

Impact

Propagated
Uncertainty Impact

Annotated
Uncertainty Source origin

1*

Figure 6.3.: Meta model of Data Flow Diagrams (DFDs) with the �ve di�erent uncertainty impact types.

their impact, see Figure 6.2. As discussed, con�dentiality and the impact of uncertainty

on con�dentiality is best investigated using DFDs. To this end, we extend the uni�ed

modeling primitives of DFDs [235], which were introduced in Section 2.5 and related to

uncertainty in Section 5.5.

Figure 6.3 shows our meta model that combines the DFD primitives (highlighted gray)

and the �ve uncertainty types. We extend the relation of uncertainty sources and their

propagated impact to DFD elements introduced in Figure 6.2 based on the mapping shown

in Table 5.11. One Annotated Uncertainty Source can have any number of DFD elements

a�ected by the Propagated Uncertainty Impact. We explain the relation of the �ve di�erent

uncertainty impact types and DFD elements in the following.

Nodes represent the system’s structure and are a�ected by Component uncertainty, e.g.,

Uncertainty U3 regarding the deployment of the Database Service component in the

running example would a�ect all nodes that represent this component. We exempli�ed

how to represent this in DAGs in Figure 5.2. Flows connect these nodes by transmitting

data and are a�ected by Connector Uncertainty. Additionally, Connector uncertainty a�ects

Assignments of con�dentiality-related labels, e.g., whether the user input is erroneous or

malicious in Uncertainty U1 of the running example. Flows are also a�ected by Component
uncertainty, as altering components can change the �ow of data, and also by Interface
uncertainty. Primarily, Interface uncertainty a�ects Pins that decouple �ows from a node

and function as interfaces in the uni�ed modeling primitives for DFDs [235]. In Section 5.5,

we called these three uncertainty types secondary uncertainty. Also, in this meta model,

we can see their broad impact on DFD elements. All secondary uncertainty a�ects two

di�erent DFD elements and can have a structural impact on the overall system.

79

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis

In comparison, primary uncertainty, i.e., Behavior uncertainty and External uncertainty,

only a�ects one DFD element. Although this impact is more direct, we cannot make any

claims on the severity or probability of con�dentiality violations due to such uncertainty

compared to secondary uncertainty—this depends on the software system, the environment,

and the uncertainty sources in both. Behavior uncertainty impacts the assignments that

are used to represent the behavior of a Node. In our running example, Uncertainty U2
about the data processing could be represented as such an uncertainty source. This

would a�ect whether the behavior of the data processing node assigns the Labels for

validation or encryption. Ultimately, this can lead to con�dentiality violations similarly

as all other uncertainty sources. Last, Nodes can also be described by Labels to represent

their con�dentiality-related properties, which are a�ected by External uncertainty. In our

running example, Uncertainty U4 can be represented as External uncertainty a�ecting a

label that expresses the trustworthiness of said DFD node.

Our metamodel and its graphical representation in Figure 6.3 demonstrate again the good

�t of the �ve uncertainty types introduced by the category Architectural Element Type
of our classi�cation to DFDs. Every uncertainty impact a�ects another element type

of the uni�ed modeling primitives. Additionally, all secondary uncertainty types a�ect

the �ow, as discussed in Section 5.5. The only exception to this rule is the Behavior,
which has no associated uncertainty type because it only acts as a container for pins and

assignments. In sum, this meta model enables us to connect the uncertainty types from

the software architecture to their corresponding impact type. The representation based on

DFD elements simpli�es the subsequent task of uncertainty propagation.

� Finding: The propagated uncertainty impact can be represented by the �ve

uncertainty types of the classi�cation category Architectural Element Type. There

is a direct relation of these types to the uni�ed modeling primitives of Data Flow

Diagrams (DFDs), which lays the foundation for the precise impact of uncertainty

regarding con�dentiality in software architectures.

6.2.3. Annotating Uncertainty Sources in the Palladio Component Model

By now, we have discussed the relation of annotated uncertainty sources and their propa-

gated impact with the more abstract view of architectural models and the more concrete

view of DFDs. However, to be applicable, one piece of the puzzle introduced in Figure 6.2

is missing: The mapping of uncertainty sources to concrete elements of the architectural

model. Instead of only referring to architectural concepts like components, connectors,

and interfaces, we discuss concrete annotation targets based on the ADL PCM [207] in the

following. These annotation targets can be derived by following the transformation [233]

from PCM to DFDs. Put simply, we investigate, which elements of the PCM are relevant

for DFDs—and thus, for con�dentiality—and annotate uncertainty sources to them. This

not only concludes the relation discussed in this section but also lays the foundation for

tool-supported modeling and automated analysis presented hereafter.

80

6.2. Representing Uncertainty in Architectural Models

Uncertainty Type PCM elements that can be annotated

Component AssemblyContext

Connector AssemblyConnector, ProvidedDelegationConnector

Interface Signature, Interface

External ResourceContainer, UsageScenario

Behavior ExternalCallAction, EntryLevelSystemCall, SetVariableAction,

BranchAction

Table 6.1.: Mapping of the �ve uncertainty types to Palladio Component Model (PCM) elements.

For the remainder of this chapter, we use the terminology known from the PCM. See

Section 2.4 for an overview of PCM, or look into its comprehensive documentation [21,

206, 207]. To minimize confusion, we use the original terminology [206, 207] although

there are slight deviations in the current Palladio implementation [205]. However, this

does only a�ect two PCM element types used in the following: Signature compared to

OperationSignature, and Interface compared to OperationInterface. Note that there are also

slight di�erences between the PCM elements used for uncertainty impact analysis and

those used to analyze con�dentiality under uncertainty in later chapters because we only

annotate uncertainty source instead of altering the architectural model. However, this is

for purely pragmatic reasons that do not a�ect the underlying concepts.

Table 6.1 shows the mapping of the uncertainty types to elements of the PCM that can be

annotated with this uncertainty source. Component uncertainty sources a�ect instances

of components and are annotated to the AssemblyContext. AssemblyContexts refer to

component types from the PCM component repository model and instantiate them within

the concrete wiring of the PCM system model. Put simply, they represent concrete compo-

nents and not component types and are thus suited to represent Component uncertainty

sources visible to software architects. In our running example, we have two repository

components, Online Shop and Database Service, which are both instantiated once. To

express uncertainty sources on type level, refer to Interface uncertainty which annotates

elements from the PCM component repository model.

Connector uncertainty a�ects inter-component structures, i.e., the wiring visible in the PCM

system model by using AssemblyConnectors. These connectors link concrete component

instances, i.e., AssemblyContexts, together. In our running example, the connection of

the Online Shop and the Database Service component is realized using such connectors.

Additionally, Connector uncertainty can also a�ect ProvidedDelegationConnectors. These

connectors represent system interfaces that can be used by users outside of the modeled

system, e.g., in UsageScenarios. We support both connector types because both can be used

to impact the usage of components, which is expressed by Connector uncertainty.

Interface uncertainty a�ects the interfaces that are de�ned in the PCM component reposi-

tory model. Here, we support two levels of granularity: Either a single Signature of an

interface or the complete Interface, i.e., all of its signatures, can be a�ected. This enables

software architects to minimize the annotation e�ort, e.g., to express that every commu-

81

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis

nication over a selected interface is subject to uncertainty. Note that in contrast to the

�rst two uncertainty types, Interface uncertainty is speci�ed on a type level and not in the

PCM system model. In our running example, the two components o�er interfaces with

multiple signatures. One of these interfaces is illustrated in Figure 6.1.

External uncertainty a�ects the context of a software system, e.g., resources, and users. It

can be annotated to ResourceContainers, which are part of the PCM resource environment

model, and UsageScenarios, which are part of the PCM usage model. Both elements are

part of the system environment and both can transitively a�ect the software system, e.g.,

because components are deployed to uncertainty-a�icted resources in the PCM component

allocation model. Selecting these two elements to express environmental concerns that can

a�ect con�dentiality is inspired by architecture-based con�dentiality analysis [234]. In our

running example, the On Premise Server and the Cloud Service represent ResourceContainers.
The Customer has multiple UsageScenarios, e.g., browsing for items, or purchasing items.

Behavior uncertainty a�ects the behavior of the software system and its users. The behavior

of the system is described in the form of Service E�ect Speci�cations (SEFFs) in a PCM

component repository model. Here, uncertainty can be annotated to ExternalCallActions
that represent components calling each other, SetVariableActions that represent internal

activities, and BranchActions that can change the control �ow. All of these elements can

a�ect the con�dentiality of data �owing through them and are thus relevant for Behavior
uncertainty. Last, Behavior uncertainty can also be annotated in EntryLevelSystemCalls
that represent the user calling the system interface and are located in the PCM usage model.

Although the location of classi�ed uncertainty di�ers, i.e., uncertainty in the System Input
instead of the System Behavior, the Architectural Element Type option stays the same for

impact analysis. In our running example, the Customer requesting the purchase of an item

is represented by an EntryLevelSystemCall, the storing of data called from the Online Shop
is realized with an ExternalCallAction, and the data processing can be modeled with a

SetVariableActions. For the sake of simplicity, we do not include branches.

In sum, all �ve types of uncertainty sources can be annotated to PCM elements. Based on

the Palladio [205] tool support, existing modeling tools can be extended to support these

annotations. While uncertainty sources are best represented in the architectural model,

their corresponding impact types are best represented in DFDs. The uncertainty types of

the category Architectural Element Type originate from investigating existing classi�cations

and DFD notations. Note that while these are generally applicable, alternative annotation

targets other than the presented PCM elements are possible [23]. This is due to the nature

of models representing reality, i.e., PCM modeling software architecture [245].

� Finding: The source of the �ve uncertainty types of the category Architectural
Element Type can be annotated to the Palladio Component Model (PCM). This

Architectural Description Language (ADL) can be extended to annotate uncer-

tainty within the software system, e.g., its structure and behavior, and the system

environment, e.g. usage scenarios and hardware resources. Relating the �ve un-

certainty types to concrete PCM elements enables software architects to represent

uncertainty sources on architectural abstraction.

82

6.3. Uncertainty Impact Analysis for Architectural Models

6.3. Uncertainty Impact Analysis for Architectural Models

Building on the representation of uncertainty sources within architectural models, we can

propagate the uncertainty to better understand its impact. Starting from the annotation

targets discussed in the previous section, we calculate this impact to de�ne an uncertainty
impact analysis [115]. Regarding con�dentiality, this analysis requires two steps [102].

First, the propagation within the architectural model, and second, the propagation in

extracted DFD. As the uncertainty sources are annotated within the architectural model,

we start with this part of the impact analysis. As introduced previously, we will use the

ADL PCM to detail the propagation rules. This addresses Problem P2.

6.3.1. Adapting Change Impact Analysis to Uncertainty Propagation

The name “uncertainty impact analysis” is inspired by architecture-based change impact
analysis [110, 210, 211]. Change impact analysis helps to predict the impact of changes

in software architectures, e.g., changing interfaces, or replacing components [210]. The

early assessment and planning of change requests support software architects in software

evolution. The underlying concept of architecture-based change impact analysis is the

propagation of changes in architectural models to identify potentially a�ected elements.

This requires the de�nition of propagation rules for each type of change, e.g., renaming a

signature in an interface requires the providing component to also adapt its naming.

Regarding the PCM, we build on Karlsruhe Architectural Maintainability Prediction

(KAMP) [46, 110, 112, 210, 211], as it provides a comprehensive foundation on change

propagation. It has been evaluated for many di�erent use cases, e.g., architectural models

[211], business processes [210], or automation systems [112]. KAMP also supports the

transitive propagation of changes, i.e., changes that occur due to other changes in the

model, also called ripple e�ects [33]. It has been used for other domain-spanning analyses

[110], e.g., to de�ne architecture-based attacker propagation [264, 267, 268]. Uncertainty is

often also referred to as unanticipated change [115, 272]. Thus, it should not be surprising

that the concept of change propagation can be reused
2
.

� Finding: In architectural models, uncertainty can be treated like unanticipated

changes. This enables the leverage of propagation rules of architectural change

impact analysis for the propagation of uncertainty.

Change impact analysis de�nes three sets of elements [33, 46]. The Starting Impact Set

(SIS), also sometimes called change set, contains the initial elements of the change request.

The Actual Impact Set (AIS), also sometimes called a�ected set, contains all elements that

2
But in fact, it was. I have been trying to assess the impact of uncertainty on con�dentiality for quite

some time without making much progress. In 2021, after helping in an oral exam that covered the topic

of change impact analysis, I asked myself: what if we could treat uncertainty like change in terms of its

impact? Yes, we can, and the result is presented in this section. Call this serendipity if you want.

83

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis

Uncertainty Source Annotated PCM element Exemplary name

User input (U1) ProvidedDelegationConnector PurchaseInterface
Data processing (U2) SetVariableAction processUserData
Component deployment (U3) AssemblyContext DatabaseService
Provider trustworthiness (U4) ResourceContainer CloudService

Table 6.2.: Starting Impact Set (SIS) representing the annotated uncertainty sources in the running example.

Candidate
Impact

Set

Actual Impact Set

Starting Impact Set

Impact Set of Uncertainty

Actual Impact Set

Annotated
Uncertainty Sources

Figure 6.4.: Informally illustrated relation of the di�erent sets of change impact analysis (left) and uncertainty

impact analysis (right).

actually have to change due to the change request. However, change impact analysis can

only estimate this set [46]. The Candidate Impact Set (CIS), also sometimes simply called

impact set, represents this estimation. Here, the goal of change impact analysis is to keep

the estimation of the CIS as close to the AIS as possible.

We build on this terminology to apply these sets to uncertainty impact analysis. The SIS

represents the elements of the software architecture with annotated uncertainty sources.

Similarly to change impact analysis, this represents the starting point for any propagation.

Additionally, these elements are already a�ected by uncertainty, which could lead to

con�dentiality violations even without any further propagation. In the running example,

the SIS contains the four elements from the software architecture that are annotated with

the four uncertainty sources. Table 6.2 shows the annotation of the uncertainty sources to

the PCM elements. Note that these annotation targets only represent exemplary locations

and could be modeled di�erently, see the discussion above. We also include exemplary

names comparable to those used in the running example model from our data set [98].

The AIS represents the elements, that are actually impacted by the uncertainty sources

in the SIS and can violate con�dentiality. This set includes all elements from the SIS, but

can additionally contain elements that are directly or indirectly a�ected. However, we

can only estimate this set. Similarly to change impact analysis, an uncertainty impact

analysis yields a CIS, which represents an estimation of potentially impacted elements.

Here, we require a more strict relation. While change impact analysis may underestimate

the CIS compared to the AIS, uncertainty impact analysis regarding con�dentiality shall

always overestimate the CIS. Put simply, an ignored impact of uncertainty could lead

to overlooked con�dentiality violations. Especially regarding security-related quality

84

6.3. Uncertainty Impact Analysis for Architectural Models

properties like con�dentiality, high recall can be more important than high precision [102].

Additionally, the uncertainty impact analysis is used for an early prediction and assessment

of uncertainty, not for precise analysis, see Section 4.1. This has to be considered in de�ning

the propagation rules for uncertainty. For the sake of simplicity, we refer to the AIS as the

actual impact set and to the CIS simply as impact set of uncertainty. The relation of the

terminology of both analyses is illustrated in Figure 6.4.

In the following, we describe propagation rules for all annotation targets of uncertainty

sources in the PCM. They have to be described separately for each relevant PCM element

as they are speci�c to the ADL PCM. Nevertheless, the general concept of architectural

uncertainty propagation is generalizable [49]. The goal of uncertainty propagation in

the architectural model is to identify all uncertainty-a�icted elements of the software

architecture, which are later represented by the extracted DFD [233]. In most cases, this

means starting with propagation rules from change impact analysis and then identifying

relevant SEFF actions, as these are relevant to the DFD extraction of Seifermann [233].

This step is important because of the abstraction gap between the representations of

DFDs and the PCM, see Section 6.2. By identifying those elements, the coupling of the

architectural impact analysis with the propagation of uncertainty in DFDs is simpli�ed.

Only propagating uncertainty in DFDs is not su�cient due to the missing information

compared to architectural models.

� Finding: Uncertainty impact analysis regarding con�dentiality in architectural

models consists of two steps. First, identifying directly and indirectly a�ected

elements, following the propagation rules of change impact analysis. Second,

identifying originating elements of the transformation to DFDs, which are rele-

vant for further propagation.

6.3.2. Uncertainty Propagation of Component Uncertainty

Component uncertainty can only be annotated to AssemblyContexts, which simpli�es the

propagation logic. Algorithm 6.1 shows the propagation algorithm. Every propagation

algorithm is called with the annotated uncertainty source contained in the parameter

uncertainty and the PCM model contained in the parameter model. We always start by

creating an empty list of results and retrieving the model element that has been annotated

with the uncertainty source, following the relation speci�ed in Figure 6.2.

In the case of AssemblyContexts, which represent instantiated components, we retrieve

the component type from the PCM component repository model in Line 4 and then query

for its SEFFs in Line 5. A component provides one SEFF for each signature of a provided

interface. For instance, in our running example, the Database Service provides SEFFs for

the operations queryInventory and storePurchaseData, see Figure 6.1.

From the perspective of the change impact analysis, these SEFFs are impacted by a change

to the component. To close the gap to the representation in DFDs, we need to retrieve

the initial actions of all SEFFs that are represented as DFD nodes [233]. We show this

85

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis

Algorithm 6.1 Algorithm for component uncertainty propagation

1: procedure propagateComponentUncertainty(uncertainty,model)
2: result ← ∅
3: assemblyContext ← getAnnotatedElement(uncertainty,model)
4: component ← getRepositoryComponent(assemblyContext,model)
5: se�s← getSEFFs(component,model)
6: for se� ∈ se�s do ⊲ Component uncertainty a�ects all SEFFs of a component

7: startAction← retrieveStartAction(se� ,model)
8: result ← result ∪ {startAction}
9: end for

10: return applyToAssembly(result, assemblyContext)
11: end procedure

Algorithm 6.2 Algorithm for retrieving the initial StartAction of a SEFF

1: procedure retrieveStartAction(se� ,model)
2: actions← getActions(se� ,model)
3: for action ∈ actions do
4: if typeOf(action) = StartAction then
5: startAction← action ⊲ The �rst start action is the start of the SEFF

6: return startAction
7: end if
8: end for
9: end procedure

separately in Algorithm 6.2 because we reuse this functionality several times in other

algorithms. A SEFF contains actions that represent its behavior, comparable to UML

activity diagrams. The initial actions have the PCM element type StartAction, see Line 4.

Using the functionality described in Algorithm 6.2, we iterate over all SEFFs, starting in

Line 6. Once we found this action, we add it to the results list in Line 8. The algorithm

ends after all initial StartActions of all SEFFs have been identi�ed and returns the result.

Note that we skip some Palladio [205] implementation details. First, we do not show

required type casts, e.g., from RepositoryComponent to BasicComponent to retrieve the

SEFFs. Second, we hide method calls, e.g., to retrieve all actions, a detour from the SEFF

through its behavior is required. Third, we skip the handling of the system context.

This step is required because SEFFs are de�ned in the PCM component repository model

and could be instantiated in multiple assemblies. However, we are only interested in

those actions representing the AssemblyContext that is annotated with the component

uncertainty. We illustrate this with a method call of applyToAssembly in Line 10. Last, we

assume well-formed PCM models without errors. All of these details would only greatly

increase the size of the algorithms without contributing to their understandability. To see

the detailed implementation of all algorithms, please look into the data set [98].

86

6.3. Uncertainty Impact Analysis for Architectural Models

Algorithm 6.3 Algorithm for retrieving all StartActions that describe a signature

1: procedure retrieveStartActionsBySignature(signature,model)
2: result ← ∅
3: allComponents← getAllRepositoryComponents(model)
4: for component ∈ 0;;�><?>=4=CB do
5: se�s← getSEFFs(component,model)
6: for se� ∈ se�s do ⊲ Find called StartActions

7: if getDescribedSignature(se� ,model) = B86=0CDA4 then
8: startAction← retrieveStartAction(se� ,model)
9: result ← result ∪ {startAction}

10: end if
11: end for
12: end for

13: return result
14: end procedure

6.3.3. Uncertainty Propagation of Interface Uncertainty

Interface uncertainty can be annotated to full interfaces or selected signatures. Uncertainty

a�ecting interfaces results in a wide impact due to their central role in software systems.

The propagation of interface uncertainty requires the most extensive algorithm. We split

the propagation into three parts. First, we identify all components and their actions that

implement the interface in Algorithm 6.3. Second, we identify all actions that represent calls

to the interface in Algorithm 6.4. Third, we identify all system calls from UsageScenarios
to the interface in Algorithm 6.5. These three steps are required as we cannot make any

assumptions on the usage of the interface, e.g., to wire components or to represent a

user interface. By combining these three steps, we specify the algorithm for interface

uncertainty propagation in Algorithm 6.6.

Interface uncertainty a�ects the PCM component repository model and is not limited

single assemblies like Component uncertainty. Thus, the impact set can be even bigger,

as all AssemblyContexts of a component can be a�ected. Put simply, if a component that

is used multiple times in a software system has uncertainty in its interface, it a�ects all

instances of this component and also all components that depend on these instances.

Algorithm 6.3 shows the algorithm to identify all SEFFs that implement a signature of an

interface. Regarding change impact analysis, this resembles the adaption of all implemen-

tations of an interface, e.g., due to a rename of a signature. We iterate over all SEFFs of

all components in the PCM component repository model to �nd matching StartActions.
The retrieval logic is similar to Component uncertainty with two important distinctions.

First, the retrieval is not limited to a single AssemblyContext but includes all components.

Second, the algorithm only considers SEFFs that implement the given signature of the

interface. Not necessarily all SEFFs of a component have to implement an interface because

components can also provide multiple interfaces. This �lter is realized in Line 7. Afterward,

87

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis

Algorithm 6.4 Algorithm for retrieving all ExternalCallActions that call a signature

1: procedure retrieveExternalCallsToSignature(signature,model)
2: result ← ∅
3: allComponents← getAllRepositoryComponents(model)
4: for component ∈ 0;;�><?>=4=CB do ⊲ Iterate over all available actions

5: se�s← getSEFFs(component,model)
6: for se� ∈ se�s do
7: actions← getActions(se� ,model)
8: for action ∈ actions do ⊲ Find calling ExternalCallActions

9: if typeOf(action) = ExternalCallAction then
10: if getCalledSignature(action,model) = B86=0CDA4 then
11: result ← result ∪ {action}
12: end if
13: end if
14: end for
15: end for
16: end for

17: return result
18: end procedure

we retrieve the StartAction in Line 8 using the logic described with Algorithm 6.2. In our

running example, retrieving the StartAction of the SEFF that implements the signature

queryInventory would yield a StartAction of the component Database Service because this

component provides the interface that contains the signature, see Figure 6.1.

Algorithm 6.4 shows the algorithm to identify all system actions that call a signature of

an interface. In the PCM, calls between components are modeled in SEFF using External-
CallActions [21]. Regarding change impact analysis, this resembles adapting the call to an

interface after the interface has changed. To identify the impacted ExternalCallActions, we

have to iterate over all available actions starting in Line 4. This is achieved by iterating

over all components, all of its SEFFs and over all of their actions. If the action represents

an ExternalCallAction, we check its called signature in Line 10. All actions that �t these

conditions are added to the result. These would also be part of the CIS of the change impact

analysis KAMP [46]. In our running example detailed in Figure 6.1, an ExternalCallAction
is used after the processing of the purchase in the Online Shop to initiate the storing of

the data in the Database Service. To minimize costly iterations, concrete implementations

of this algorithm can cache identi�ed ExternalCallActions or use other query methods,

which return all occurrences of an element type within a model [98]—we show the generic

approach of iterating over all components to keep the algorithm as simple as possible.

Algorithm 6.5 shows the algorithm to identify all calls from a UsageScenario to a signature

of an interface. In the PCM, calls to the the system are modeled using EntryLevelSystem-
Calls. As discussed above, this step is required as we cannot assume that an interface is

only used between components. This step is also performed by change impact analysis

88

6.3. Uncertainty Impact Analysis for Architectural Models

Algorithm 6.5 Algorithm for retrieving all EntryLevelSystemCalls that call a signature

1: procedure retrieveEntryCallsToSignature(signature,model)
2: result ← ∅
3: allUsageScenarios← getAllUsageScenarios(model)
4: for usageScenario ∈ 0;;*B064(24=0A8>B do
5: actions← getActions(usageScenario,model)
6: for action ∈ actions do ⊲ Find calling EntryLevelSystemCalls

7: if typeOf(action) = EntryLevelSystemCall then
8: if getCalledSignature(action,model) = B86=0CDA4 then
9: result ← result ∪ {action}

10: end if
11: end if
12: end for
13: end for

14: return result
15: end procedure

[46]. To identify relevant EntryLevelSystemCalls, we iterate over all actions of all UsageSce-
narios, starting in Line 4. We �rst check for the type of the action in Line 7, and if it

represents an EntryLevelSystemCall, we check the called signature in Line 8. Afterward,

the actions are added to the result. This procedure closely resembles the retrieval of

impacted ExternalCallActions. Here, the main di�erence is that we do not analyze the

behavior of a component but the user behavior that is modeled in the PCM usage model.

In our running example, all calls of the Customer to the Online Shop are modeled using

EntryLevelSystemCalls, e.g., the querying of items.

We combine the algorithms 6.3, 6.4, and 6.5 to specify the propagation algorithm for

Interface uncertainty in Algorithm 6.6. After retrieving the element that has been annotated

with uncertainty in Line 4, we perform a type check in Line 5. If the annotated element is

an Interface, we decompose the interface into its signatures and add it to the list of a�ected

signatures. If the annotated element is a Signature, this list only consists of this single

signature. This resembles one propagation step from change impact analysis [46, 210] and

enables the treatment of both annotations targets similarly in the following. Put simply,

annotating a signature instead of an interface increases the precision of the result but only

has a negligible e�ect on the propagation logic. Afterward, we iterate over all signatures

in Line 10. For each signature, we perform the three retrieval tasks, i.e., retrieving a�ected

StartActions, ExternalCallActions, and EntryLevelSystemCalls. The combined result is

returned from the algorithm. Note that this does not cause any typing problems, as we

expect any action as a result, similarly to all other propagation algorithms.

In our running example, an Interface uncertainty that has been annotated to the interface

between the Online Shop and the Database Service components would yield a�ected ele-

ments from both components. This includes StartActions from SEFFs of all implementations

of operations speci�ed in the interface and also ExternalCallActions to these operations.

89

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis

Algorithm 6.6 Algorithm for interface uncertainty propagation

1: procedure propagateInterfaceUncertainty(uncertainty,model)
2: result ← ∅
3: a�ectedSignatures← ∅
4: annotatedElement ← getAnnotatedElement(uncertainty,model)
5: switch typeOf(annotatedElement) do
6: case Signature

7: a�ectedSignatures← {annotatedElement}
8: case Interface ⊲ Decompose the interface

9: a�ectedSignatures← getSignatures(annotatedElement,model)

10: for signature ∈ a�ectedSignatures do ⊲ Combine the three retrieval steps

11: result ← result ∪ retrieveStartActionsBySignature(signature,model)
12: result ← result ∪ retrieveExternalCallsToSignature(signature,model)
13: result ← result ∪ retrieveEntryCallsToSignature(signature,model)
14: end for

15: return result
16: end procedure

However, as this interface is only used between components, no EntryLevelSystemCalls
would be directly a�ected. Note that there is no call to applyToAssembly as we do not

limit the impact of uncertainty to a single assembly. For instance, if the Database Service
component would be used in multiple locations in the system, all instances would be

a�ected by the uncertainty.

Similarly to the propagation of Component uncertainty shown in Algorithm 6.1, we hide

implementation details. This includes chained method calls, e.g., to retrieve all actions

of a UsageScenario, a detour over its behavior is required [205]. Although all algorithms

presented in this section contain several loops, we do not expect problems regarding

their scalability in practice. First, the sets to iterate over are usually small, e.g., because a

properly de�ned interface only contains a small number of signatures [164]. Second, there

are many ways to speed up the implementation, e.g., by using caches, or by integrating

the extracted DFDs early in the propagation to �lter potential candidates. We apply many

of these optimizations in our implementation that are available in the data set [98].

6.3.4. Uncertainty Propagation of Connector Uncertainty

Connector uncertainty can be annotated to AssemblyConnectors and ProvidedDelegationCon-
nectors. Algorithm 6.7 shows the propagation algorithm. Uncertainty a�ecting connectors

behaves comparable to Interface uncertainty. It impacts both the called component and

the calling entity, which can be another component or a user. The main di�erence is that

connectors are speci�c to assemblies and modeled in the PCM system model. We can reuse

90

6.3. Uncertainty Impact Analysis for Architectural Models

Algorithm 6.7 Algorithm for connector uncertainty propagation

1: procedure propagateConnectorUncertainty(uncertainty,model)
2: result ← ∅
3: connector ← getAnnotatedElement(uncertainty,model)
4: interface← getInterface(connector,model)
5: signatures← getSignatures(interface,model)
6: calledAssembly ← getProvidingAssemblyContext(connector,model)
7: for signature ∈ signatures do ⊲ Find called StartActions

8: actions← retrieveStartActionsBySignature(signature,model)
9: result ← result ∪ applyToAssembly(actions, calledAssembly)

10: end for

11: switch typeOf(connector) do
12: case AssemblyConnector

13: callingAssembly ← getReqiringAssemblyContext(connector,model)
14: for signature ∈ signatures do ⊲ Find calling ExternalCallActions

15: actions← retrieveExternalCallsToSignature(signature,model)
16: result ← result ∪ applyToAssembly(actions, callingAssembly)
17: end for

18: case ProvidedDelegationConnector

19: delegatedContext ← getDelegatedContext(connector,model)
20: for signature ∈ signatures do ⊲ Find calling EntryLevelSystemCalls

21: actions← retrieveEntryCallsToSignature(signature,model)
22: result ← result ∪ applyToAssembly(actions, delegatedContext)
23: end for

24: return result
25: end procedure

the logic de�ned for Interface uncertainty hereabove but we have to relate the results to

the correct AssemblyContexts.

A Connector represents the wiring of two entities within a software system, expressed, e.g.,

using the ball and socket notation of UML component diagrams as shown in Figure 3.1. All

connectors are based on an interface that we retrieve in Line 4. In the PCM, we support

AssemblyConnectors between two components and ProvidedDelegationConnectors that can

be referred to outside the system in UsageScenarios.

Independent of its type, a connector always has a providing AssemblyContext, representing

the component that implements the provided interface. This called AssemblyContext
is retrieved in Line 6. Afterward, we �nd all called StartActions beginning in Line 7.

Here, we can reuse the logic de�ned for Interface uncertainty in Algorithm 6.3. The only

di�erence is that we are only interested in those StartActions that represent the connected

AssemblyContext. This is realized in Line 9, similarly to Component uncertainty.

91

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis

Afterward, we address the calling side, starting in Line 11. In the case of an Assembly-
Connector, we retrieve the calling assembly that requires the interface represented by the

connector in Line 13. We use the logic de�ned for Interface uncertainty in Algorithm 6.4

to �nd the according ExternalCallActions in Line 14. Again, we have to apply the correct

AssemblyContext. This time, this is achieved using the calling assembly in Line 16. In the

case of a ProvidedDelegationConnector, we proceed with the retrieval of EntryLevelSys-
temCalls. Here, we are only interested in the provided delegation of the system interface,

which is retrieved in Line 19. After receiving candidate ExternalCallActions in Line 20, we

apply again the correct context in Line 22.

Put simply, to propagate Connector uncertainty we proceed as if the interface that is

represented would be a�ected by Interface uncertainty. Every potentially impacted ac-

tion is then applied to the correct AssemblyContext, either called or calling. Regarding

change impact analysis, this resembles the required changes both in the component that

implements an interface and the component requiring an interface. Besides the handling

of AssemblyContexts and indirection from the Connector to interfaces, another di�erence

is the distinction of the connector type. When propagating Interface uncertainty, we

only use the PCM component repository model and we cannot make assumptions on

the interface use, i.e., whether the interface is only used between components or also in

UsageScenarios. Opposite to this, Connectors are part of the PCM system model that models

this information. Thus, we are not required to handle all cases and can either retrieve

ExternalCallActions or EntryLevelSystemCalls, but not both. In our running example, the

results of an Interface uncertainty and a Connector uncertainty annotated between the

Online Shop and Database Service components are identical because both components are

only referred by a single AssemblyContext. Similarly to the other algorithms, we simpli�ed

some chained method calls and we refer to the data set for more details [98].

6.3.5. Uncertainty Propagation of External Uncertainty

External uncertainty can be annotated to ResourceContainers and UsageScenarios. Al-

gorithm 6.8 shows the propagation algorithm. ResourceContainers are part of the PCM

resource environment model and UsageScenarios are part of the PCM usage model. Al-

though the propagation logic di�ers, it states the same: Find all actions that belong to

the element that has been annotated with external uncertainty. Put simply, if a resource

container or a user is a�ected by uncertainty, we cannot trust any of their actions.

The algorithm starts with a large switch statement in Line 4. In the case of an annotated

UsageScenario, we iterate over all of its actions, starting in Line 6. This is similar to the

identi�cation of relevant EntryLevelSystemCalls of Interface or Connector uncertainty. The

major di�erence is that we do not �lter for a speci�c signature, but add all identi�ed

EntryLevelSystemCalls, as they could all be a�ected by uncertainty. We only consider

EntryLevelSystemCalls as they represent the only user actions that are considered in the

extraction of DFDs [233].

92

6.3. Uncertainty Impact Analysis for Architectural Models

Algorithm 6.8 Algorithm for external uncertainty propagation

1: procedure propagateExternalUncertainty(uncertainty,model)
2: result ← ∅
3: annotatedElement ← getAnnotatedElement(uncertainty,model)
4: switch typeOf(annotatedElement) do
5: case UsageScenario

6: actions← getActions(annotatedElement,model)
7: for action ∈ actions do ⊲ Find all EntryLevelSystemCalls

8: if typeOf(action) = EntryLevelSystemCall then
9: result ← result ∪ {action}

10: end if
11: end for

12: case ResourceContainer

13: allAssemblyContexts← getAllAssemblyContexts(model)
14: for context ∈ allAssemblyContexts do ⊲ Find all actions

15: if getAllocation(context,model) = 0==>C0C43�;4<4=C then
16: component ← getRepositoryComponent(context,model)
17: se�s← getSEFFs(component,model)
18: for se� ∈ se�s do
19: actions← getActions(se� ,model)
20: result ← result ∪ applyToAssembly(actions, context)
21: end for
22: end if
23: end for

24: return result
25: end procedure

In the case of an annotated ResourceContainer, we have to identify all AssemblyContexts
that are allocated on this container. We retrieve all AssemblyContexts from the PCM

system model in Line 13 and iterate over them. For each assembly, we check its allocation

using the PCM allocation model in Line 15. If an AssemblyContext is deployed on the

ResourceContainer that has been annotated with the uncertainty, we add all of its actions

to the result list in Line 20. This step is comparable to the propagation of Component
uncertainty. However, we do not limit the propagation to StartActions as every action

could be a�ected by uncertainty.

In the running example, an external uncertainty annotated to the ResourceContainer where

the Online Shop gets deployed would a�ect all of its actions. In the simpli�ed illustration

shown in Figure 6.1, this would include process request, display items, and process purchase.
External uncertainty can have a particularly large impact if many AssemblyContexts are

deployed on a single ResourceContainers a�ected by uncertainty. The same applies to

UsageScenarios with many EntryLevelSystemCalls. Again, we simpli�ed some methods

shown in the algorithm to increase understandability. Interestingly, external uncertainty

93

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis

Algorithm 6.9 Algorithm for behavior uncertainty propagation

1: procedure propagateBehaviorUncertainty(uncertainty,model)
2: result ← ∅
3: annotatedElement ← getAnnotatedElement(uncertainty,model)
4: switch typeOf(annotatedElement) do
5: case EntryLevelSystemCall

6: result ← result ∪ {annotatedElement}
7: case ExternalCallAction

8: result ← result ∪ {annotatedElement}
9: case SetVariableAction

10: result ← result ∪ {annotatedElement}
11: case BranchAction

12: actions← getActions(annotatedElement,model)
13: for action ∈ actions do
14: if typeOf(action) = StartAction then
15: result ← result ∪ {action}
16: end if
17: end for

18: return result
19: end procedure

requires the connection of all PCM models, namely the usage model, system model,

component repository model including SEFFs, the resource environment model, and the

allocation model. However, this is not surprising, as external uncertainty a�ects the system

context in di�erent places and is propagated into the software system.

6.3.6. Uncertainty Propagation of Behavior Uncertainty

Behavior uncertainty can be annotated to EntryLevelSystemCall, ExternalCallActions, Set-
VariableAction, and BranchActions. Algorithm 6.9 shows the propagation algorithm. De-

spite being the uncertainty source with the most possible annotation targets, the propaga-

tion algorithm is simple. The algorithm is realized using one big switch statement starting

in Line 4. In the case of EntryLevelSystemCalls, ExternalCallActions and SetVariableActions,
no propagation is required and the annotated elements can directly be added to the result.

The reason for this simplicity is that all three elements are directly represented in the ex-

tracted DFD [233]. Thus, no further architectural propagation is required as the transitive

impact can be calculated purely in the DFD-based uncertainty propagation. In the running

example, a behavior uncertainty annotated to the ExternalCallAction to trigger the storing

of data thus only contains the action itself as a result of the architectural propagation.

Only uncertainty annotated to BranchActions requires additional architectural propaga-

tion, starting in Line 11. These actions encapsulate inner sequences of actions, called

94

6.3. Uncertainty Impact Analysis for Architectural Models

BranchTransitions, that represent the behavior of the SEFF if the conditions for one branch

are met. There is no upper limit for the number of BranchTransitions. Thus, we retrieve

all actions that are part of all transitions of the BranchAction and �lter for StartActions
that are added to the result. Because all actions are part of the PCM component repository

model, no handling of AssemblyContexts is required. Note that this does not imply that

Behavior uncertainty generally has a narrower impact on con�dentiality. This only implies

that this uncertainty type has a narrower impact using uncertainty propagation in archi-

tectural models. To comprehensively analyze the impact of uncertainty on con�dentially,

additional DFD-based propagation is required, as explained in Section 6.2.

6.3.7. Applying Architectural Uncertainty Impact Analysis

As explained previously in Section 6.2, we combine uncertainty impact analysis in archi-

tectural models and in DFD to get comprehensive insights on the impact of uncertainty on

con�dentiality. In this section, we introduced all algorithms for architectural propagation

of uncertainty. To conclude, we apply these algorithms on the four annotated uncertainty

sources U1 – U4 from our running example presented in Chapter 3. We introduced the

terminology of SIS, AIS, and CIS at the beginning of this section. The result of the uncer-

tainty impact analysis can be considered as a partial CIS, or partial impact set, because we

still lack the second part of the impact analysis, i.e., the propagation in DFDs. Nevertheless,

the identi�ed elements of the architectural propagation represent the starting point for

the DFD-based propagation. We present the results of the architectural impact analysis

based on the exemplary SIS presented in Table 6.2.

Uncertainty U1 a�ects the user input and is modeled as Connector uncertainty. This

uncertainty source is annotated to the ProvidedDelegationConnector of the PurchaseInterface,
which also represents the SIS. We apply the connector uncertainty propagation described

in Algorithm 6.7. The interface that is represented by the ProvidedDelegationConnector
consists of one signature: purchaseItem, to buy items from the online shop. This operation

is implemented in the Online Shop component and used in a single AssemblyContext
of this component. Thus, there is only one StartAction to identify, i.e., the StartAction
of the SEFF that also contains the processing of the purchase prior to its storage in

the database. As StartActions are usually not named in SEFFs [205], we refer to it as

purchaseItem.start. Following the propagation in the calling direction, we identify the

EntryLevelSystemCall in the UsageScenario that represents a customer purchasing items

from the shop. EntryLevelSystemCalls are usually named after the interface and signature

they call, i.e., PurchaseInterface.purchaseItem. To conclude, our partial impact set after the

architectural propagation is CISU1 = {purchaseItem.start, PurchaseInterface.purchaseItem}.
Both actions can be directly mapped to the DFD [233] for further propagation.

Uncertainty U2 a�ects the data processing and is modeled as Behavior uncertainty. It is

annotated to a SetVariableAction of the SEFF for processing the purchases of customers in

the Online Shop component, called processUserData. We apply the behavior uncertainty

propagation described in Algorithm 6.9. In the case of a SetVariableAction, the result of the

95

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis

architectural propagation is the action itself. Thus, the partial impact set is similar to the

SIS, i.e., CISU2 = {processUserData}. This action can directly be mapped to DFDs.

UncertaintyU3 a�ects the deployment of theDatabase Service and is modeled asComponent
uncertainty. It is annotated to the Database Service component—to be more precise, to

the single AssemblyContext that represents this component. We apply the component

uncertainty propagation described in Algorithm 6.1. The architectural propagation of

this uncertainty includes identifying all StartActions of all provided SEFFs. As shown in

Figure 6.1, this component provides one interface with two operations: queryInventory to

query the information about available items stored in the database, and storePurchaseData
to store details about purchases in the database. Similarly to Uncertainty U1, we name the

start actions of these two SEFFs queryInventory.start and storePurchaseData.start. Thus,

the partial impact set is CISU3 = {queryInventory.start, storePurchaseData.start}.

Uncertainty U4 represents the provider’s trustworthiness of the CloudService and is mod-

eled as External uncertainty. It is annotated to the ResourceContainer that represents the

CloudService. We apply the external uncertainty propagation described in Algorithm 6.8. In

this propagation algorithm, we �rst identify all potentially allocated AssemblyContexts. In

the running example, this is the single AssemblyContext representing the Database Service
component. Afterward, we retrieve all of its actions, as all actions could be potentially

a�ected by the uncertainty. This includes StartActions, ExternalCallActions, SetVariable-
Actions, and StopActions. This causes the biggest partial impact set, that we brie�y show

as CISU4 = {queryInventory.start, queryData, storeData, . . . , storePurchaseData.stop}. See

Appendix B, or the data set [98] for the comprehensive result.

These partial impact sets show the versatility of the impact of uncertainty on con�den-

tiality. They also demonstrate the importance of considering the transitive impact of

uncertainty. For instance, Uncertainty U2 is propagated only to a single action using the

architectural uncertainty impact analysis. However, invalid data processing can cause

other con�dentiality violations later in the data �ow, e.g., in the database. Theoretically,

this propagation could be realized in architectural models like the PCM. However, the al-

gorithms would be hard to de�ne, complex, and require the handling of many special cases.

Thus, we reuse the mapping from the PCM to DFDs to simplify the further propagation.

Another interesting insight is that some of the impact sets share elements, e.g., query-
Inventory.start. This is not surprising as these elements represent the data �ow and can

a�ect con�dentiality. Regarding the impact analysis, we can freely join single impact sets

for further propagation or continue with the result of a single annotated uncertainty. This

decision depends on the software architect’s need for a precise or comprehensive impact

analysis result. As we do not alter the modeled software architecture but only annotate

uncertainty, we can ignore the UIP in this analysis.

� Finding: The Uncertainty Interaction Problem (UIP) does not a�ect architec-

tural uncertainty impact analysis. The propagation results of single uncertainty

sources can be merged into joint impact sets. These sets partially represent the

impact on con�dentiality and require further propagation along the data �ow.

96

6.4. Uncertainty Impact Analysis for Data Flow Diagrams

1

4

7

8

2

5 6

9 10

3

11 12

U1?
?U2

A

B

C

W

X

Y

Z

Figure 6.5.: A simple yet versatile Data Flow Diagram (DFD) with sources (A–C), processes (1–12), sinks

(W–Z), and data �ows. Uncertainty is denoted by question marks (U1, U2) and the impact set is colored gray.

6.4. Uncertainty Impact Analysis for Data Flow Diagrams

In this section, we discuss how uncertainty can be propagated in DFDs to analyze its impact

on con�dentiality. This represents the second half of our architecture-based uncertainty

impact analysis [102] and can be used together with the propagation of uncertainty in

architectural models, presented in the previous section. The result of this data �ow-based

impact analysis is the �nal impact set of uncertainty, an estimation of the actual impact of

uncertainty on con�dentiality, as discussed in Section 6.2. In the following, we discuss the

propagation by referring to DFD nodes. Although we build on the mapping of Seifermann

[233] from PCM to DFDs, the impact analysis could also be applied to DFDs that are

manually de�ned or that originate from other ADLs. This addresses Problem P2.

The propagation of uncertainty in DFD starts at selected nodes, e.g., the results of the

uncertainty impact analysis in architectural models or the results of an expert’s manual

investigation. Following the terminology introduced in Section 6.3, these nodes form a

set similar to the SIS. The central propagation rule of uncertainty in DFD is simple to

de�ne
3
: Starting at each impacted node, follow the direction of each outgoing �ow until a

sink is reached. Add each node on this way to the impact set. We will present the formal

foundations and algorithms for this propagation in the following subsections. For now,

we stay on this informal level to explain the reasoning behind this propagation rule.

Figure 6.5 shows a simpli�ed DFD with multiple processes, sources, sinks, and �ows,

demonstrating the versatility of this notation. We use this graph instead of the running

example because it contains more special cases, e.g., forking and joining data multiple

times. The �gure also shows two starting points of the uncertainty propagation, depicted

with question marks, named U1 and U2. The annotated nodes represent the starting

nodes, i.e., startU1∪U2 = {4, 9}. The nodes contained in the impact set are colored gray. The

3
This central propagation rule might be simple to de�ne, but it was hard to �nd. It took several student’s

theses [23, 35, 200, 250] and more than one year of research before a consensus was reached.

97

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis

informally described rule of uncertainty propagation in DFDs becomes visible here. Every

node that can be reached from the starting nodes is contained in the uncertainty impact set.

In this simpli�ed example, impactU1 = {3, 4, 5, 6,, ,- } and impactU2 = {9, 10, . }. Trivially,

nodes can also be contained in multiple impact sets if the impact of multiple starting nodes

overlaps. Because the UIP does also not a�ect uncertainty impact analysis in DFDs, we can

merge the impact sets to form the full impact set impactU1∪U2 = {3, 4, 5, 6, 9, 10,, ,-,. }.

If we interpret uncertainty as unanticipated change, it can only a�ect con�dentiality at

every point that is a�ected by the change. Regarding data �ows, this requires data to be

processed or forwarded by an a�ected node. Nodes that have no contact with certain

�owing data cannot a�ect the data’s con�dentiality, regardless of uncertainty. After a data

�ow has been impacted by uncertainty, we do not make any further assumptions about

con�dentiality, as any node could or could not violate con�dentiality. In our running

example, an uncertain data processing could a�ect con�dentiality directly in the a�ected

processing action, or in a subsequent validation check, or when the data �ows to the

Database Service component, or when the data is stored in the database. This depends on

the modeled software architecture and the speci�ed con�dentiality requirements. However,

we can safely exclude any node that cannot be reached by an impacted node following the

�ow of data. This includes all previous nodes to the impacted node in the data �ow but

also all other nodes that cannot be reached. As software systems usually contain many,

independent data �ows [233], this highly reduces the potential size of the impact set.

� Finding: Uncertainty in Data Flow Diagrams (DFDs) propagates along data

�ows, starting from an impacted node until a sink is reached. Preceding nodes

and nodes that cannot be reached following the �ow of data are not a�ected.

6.4.1. Formal Foundation for Uncertainty Impact Analysis

As introduced in Section 2.5 and discussed previously in Section 5.5, DFDs can be repre-

sented using DAGs [53]. Regarding uncertainty impact analysis, we do not require the

distinction between primary and secondary uncertainty. For impact analysis, we only

consider DFD nodes—or DAG vertices—that are either contained or not contained in an

impact set. Thus, we do not alter the DAG but only reference a subset of its nodes as an

impact set. We explained these sets at the beginning of this section with Figure 6.5.

A DAG � = (+ , �) consist of vertices + and edges �. These represent nodes and data

�ows, respectively. Two vertices D, E ∈ + are strictly partially ordered E ≺ D if there exists

a path from E to D, i.e., a data �ow. This data �ow can also be transitive because a strict

partial order is irre�exive, asymmetric, and transitive [141]. For instance, in Figure 6.5,

4 ≺ 5 and also 4 ≺ 6 but 4 ⊀ � and 4 ⊀ 9 because there is no (transitive) data �ow. An

induced subgraph � [+ ′] consists of a subset of vertices + ′ ⊆ + and all edges that have

both endpoints in + ′ [66]. Put simply, in our DAGs, we start with a vertex and add all

vertices that can be reached from this vertex and all the required edges to reach these

vertices to the subgraph. For instance, in Figure 6.5, + ′ = {12, . , / } induces the subgraph

�′ =: � [+ ′] with vertices + ′ and edges {12 → Y , 12 → Z} = �′ ⊂ �.

98

6.4. Uncertainty Impact Analysis for Data Flow Diagrams

To propagate uncertainty in DFDs, we start with a vertex E ∈ + and add it to the impact

set (⊆ + . Then, we iteratively add all vertices that are in the direction of the data �ow,

i.e., all D ∈ + where E ≺ D. We add all visited edges to the subset �′ ⊆ �. The propagation

ends once we reached all reachable data sinks, i.e., vertices without outgoing edges. (

then induces a subgraph� [(] with all impacted vertices and all directed edges �′ between

them. This subgraph itself forms a DAG �′ = ((, �′). Note that we do not limit the size of

(. In severe cases and wide uncertainty impacts, (= + .

In our current example introduced in Figure 6.5, these induced subgraphs are represented

by the nodes that are colored gray. Uncertainty U1 causes the induced subgraph �* 1 =:

� [(* 1] with (* 1 = {3, 4, 5, 6,, ,- } and edges �* 1 = {4 → 5, 5 → 3, 5 → 6, 3 → W , 6 →
X }. Uncertainty U2 causes the induced subgraph�* 2 =: � [(* 2] with (* 2 = {9, 10, . } and

edges �* 2 = {9 → 10, 10 → Y }. (* 1 and (* 2 represent the impact sets presented in the

beginning of this section. They also represent the �nal impact set of uncertainty regarding

con�dentiality, i.e, the result of our uncertainty impact analysis. Note that impact sets can

be a subset of another impact set as well as the induced subgraphs can be subgraphs of

other induced subgraphs. Due to our construction of induced subgraphs, both conditions

imply each other. For instance, for the a subgraph � [+ ′′] induced by + ′′ = {10, . } with

the edge {10 → Y }, we see + ′′ ⊂ (* 2 and � [+ ′′] ⊆ �* 2.

� Finding: The impact of uncertainty in Directed Acyclic Graphs (DAGs) fol-

lows the strict partial order of the data �ow. Uncertainty impact sets contain

the a�ected vertex and all vertices that can be reached via directed edges. They

induce subgraphs of the DAG representing the uncertainty impact.

6.4.2. Algorithm for Uncertainty Impact Analysis in Data Flow Diagrams

Based on the �ndings presented above, we de�ne an algorithm for uncertainty impact

analysis in DFDs. Here, we see the bene�ts of using simple graphs like DAGs for the

propagation. Due to the lack of cycles, we can apply simpli�ed versions of Depth-First

Search (DFS) or Breadth-First Search (BFS) [141] without the need for testing for already

visited vertices. The resulting sets represent the �nal impact sets without further steps

required regarding the propagation. They can be used to induce subgraphs of the DAG.

Algorithm 6.10 shows the algorithm for uncertainty propagation in DFDs. We �rst initialize

the stack used for the search and the resulting impact set, starting in Line 2. While the

stack is not empty, we add the identi�ed vertices to the impact set in Line 6 and continue

with all neighbors in the direction of the data �ow, i.e., all successors in Line 7. The stack

runs empty when no further vertices can be found, i.e., when we have found all reachable

data sinks. Last, the resulting impact set is returned in Line 11.

We discussed the one-to-many relation between an uncertainty source and its impact in

Section 6.2. While this relation becomes visible already in the architectural propagation,

it is common in the data �ow-based propagation. If at least one vertex is a�ected by

uncertainty that is not a data sink, the number of impacted elements grows larger than

99

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis

Algorithm 6.10 Algorithm for uncertainty propagation in data �ow diagrams

1: procedure propagateUncertaintyInDFD(start, graph)

2: stack ← [start] ⊲ Initialize stack with the start vertex

3: impactset ← ∅
4: while notEmpty(stack) do
5: vertex ← pop(stack)
6: impacset ← impactset ∪ {vertex} ⊲ Fill the impact set

7: for BD224BB>A ∈ getSuccessors(vertex, graph) do
8: push(stack, successor)
9: end for

10: end while

11: return impactset
12: end procedure

the number of annotated elements. Based on this graph-oriented point of view, we can

see again the need for uncertainty impact analysis to understand the potential impact of

uncertainty on con�dentiality.

6.5. Uncertainty Impact Analysis regarding Confidentiality

We combine the propagation of uncertainty in architectural models with the propagation of

uncertainty in DFDs to complete our uncertainty impact analysis regarding con�dentiality.

On the one hand, the architectural propagation uses modeled information to retrieve

the uncertainty impact that is missing in DFDs. On the other hand, the architectural

propagation, which is based on change impact analysis [46, 211], requires handling special

cases, has more complex propagation rules, and is speci�c to concrete ADLs like the PCM.

Uncertainty propagation in DFDs is ADL-independent and can easily be de�ned based

on DFS or BFS. Thus, we connect both impact analyses to combine their bene�ts. This

concludes our approach to address Problem P2.

To achieve this, we reuse the mapping of PCM to DFDs, de�ned by Seifermann [233]. We

�rst calculate the partial impact set of the architectural uncertainty impact analysis. This

impact set consists of di�erent elements of the PCM, namely StartActions, StopActions,
SetVariableAction, and ExternalCallActions that are described in SEFFs and also EntryLevel-
SystemCalls that are speci�ed in the UsageScenario. All of these actions have counterparts

in the extracted DFDs and there is a one-to-one mapping between these actions and their

corresponding DFD nodes. This satis�es the relation presented in Figure 6.2 as every DFD

node is a unique origin in the architectural model.

100

6.5. Uncertainty Impact Analysis regarding Con�dentiality

6.5.1. Coupling the Uncertainty Impact Analysis Approaches

We extend the notation introduced in Section 6.4 to present the coupled analyses. We

use DAGs � = (+ , �) to represent DFDs with the strict partial order D, E ∈ + ,D ≺ E

representing data �ows. Let � = {01, . . . , 0=} be the set of all architectural elements like

components, or interfaces and let (= {B1, . . . , B=} be the set of all uncertainty sources.

We name the annotation of an uncertainty source to an architectural element 0 : (→ �.

For instance, in our running example, {PurchaseInterface, processUserData} ⊂ �, and

(= {U1,U2,U3,U4}. Then, we can specify the annotations as 0(U1) = %DA2ℎ0B4�=C4A 5 024 ,

or 0(U4) = �;>D3(4AE824 , as shown in Table 6.2. We reuse the mapping [233] from an

architectural element to its corresponding vertices of the DFD as< : �→ + .

The uncertainty impact analysis can be de�ned as function D : (→ - ⊆ + , where (

represents all uncertainty sources. - induces a subgraph� [-] of the DFD, i.e., the part of

the software system that is a�ected by the annotated uncertainty sources. The analysis

consists of three steps: First, we conduct the architectural propagation of the uncertainty

based on the by adapting the propagation rules de�ned by change impact analysis. For

example, altering an interface does a�ect both its caller and the callee. We de�ne the

architectural propagation as ?� : �→ �. Second, we apply the previously de�ned mapping

< : � → + from all a�ected architectural elements to their corresponding vertices of

the DFD. Third, we de�ne the propagation along the data �ow as ?� : + → - ⊆ + . The

previously mapped vertices represent the �rst a�ected nodes in the direction of the data

�ow, so that ∀G ∈ - ⊆ + , ∃0 ∈ � : <(0) = G ∨<(0) ≺ G . The induced subgraph � [-]
represents the full impact set including transitive e�ects. In sum, we de�ne the uncertainty

impact analysis as D = ?� ◦< ◦ ?� ◦ 0.

Put simply, starting with the annotation function 0, we receive all annotated elements

of the software architecture, e.g., the PurchaseInterface. The architectural propagation ?0
yields all impacted elements of the software architecture, e.g., the EntryLevelSystemCall
to purchase items. We apply the mapping< to �nd the DFD node corresponding to this

EntryLevelSystemCall. Then, we use the data �ow-based propagation ?� to identify all

nodes where data from this node �ows. Speaking in terms of DAGs, these represent a

subset of all vertices - ⊆ + that induce a subgraph of the DAG. This represents the �nal

result of the uncertainty impact analysis, showing the potential impact of uncertainty on

the software system regarding con�dentiality.

6.5.2. Algorithm for the Coupled Uncertainty Impact Analysis

This foundation enables the combination of uncertainty impact analysis in architectural

models and DFDs. Algorithm 6.11 shows the resulting propagation algorithm for analyzing

the impact of uncertainty on con�dentiality in PCM models. This algorithm combines

all algorithms that have been introduced in Section 6.3 and Section 6.4 and realizes the

aforementioned coupling of the uncertainty impact analysis approaches.

101

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis

Algorithm 6.11 Algorithm for uncertainty impact analysis regarding con�dentiality

1: procedure propagateUncertainty(uncertainty,model)
2: candidates← ∅
3: switch typeOf(uncertainty) do ⊲ Propagation in the architectural model ?�
4: case ComponentUncertainty

5: 20=3830C4B ← propagateComponentUncertainty(uncertainty,model)
6: case InterfaceUncertainty

7: 20=3830C4B ← propagateInterfaceUncertainty(uncertainty,model)
8: case ConnectorUncertainty

9: 20=3830C4B ← propagateConnectorUncertainty(uncertainty,model)
10: case ExternalUncertainty

11: 20=3830C4B ← propagateExternalUncertainty(uncertainty,model)
12: case BehaviorUncertainty

13: 20=3830C4B ← propagateBehaviorUncertainty(uncertainty,model)

14: impactset ← ∅ ⊲ Mapping to the data �ow diagram<

15: graph← mapToDataFlowDiagram(model)
16: candidates← mapToVertices(candidates,model, graph)
17: for vertex ∈ candidates do ⊲ Propagation in the data �ow diagram ?�
18: impactset ← impactset ∪ propagateUncertaintyInDFD(vertex, graph)
19: end for

20: return impactset
21: end procedure

We start with an empty set of candidates in Line 2. Depending on the type of the annotated

uncertainty source, we choose the matching algorithm for the architectural propagation

in Line 3. This represents the function ?�. The result of this propagation is one or more

elements from the architectural model, i.e., PCM elements. Which and how many candidate

elements are identi�ed in the architectural propagation depends on the architectural model

and the type of uncertainty. For instance, Behavior uncertainty yields one element in most

of the cases, as speci�ed in Algorithm 6.9. On the contrary, Interface uncertainty always

yields multiple candidate elements, as described in Algorithm 6.6.

Afterward, we map the architectural model to a DFD and all candidate elements to their

corresponding vertices, starting in Line 15. We do not elaborate the functions mapTo-
DataFlowDiagram and mapToVertices but refer to the de�nition of this mapping [233, 234]

and to the examples provided in Figure 3.2 and Figure 6.1. The result of this mapping

in Line 16 is a set of vertices representing the starting points for the uncertainty impact

analysis in DFDs. This represents the function<. We propagate the uncertainties in the

DFDs, starting in Line 17. We have to repeat this step for every candidate vertex as there

can be multiple candidates. The impact set is the union of all individual propagation

results. This represents the function ?� . The �nal impact set is returned in Line 20.

102

6.5. Uncertainty Impact Analysis regarding Con�dentiality

Annotated

element

A�ected PCM elements,

Mapped DFD nodes

Uncertainty Impact set

U1 Purchase-

Interface

PurchaseInterface.purchaseItem,

purchaseItem.start

PurchaseInterface.purchaseItem,

purchaseItem.start,

processPurchase,

processUserData,

. . .

U2 process-

UserData

processUserData processUserData,

DBService.storePurchaseData,

storePurchaseData.start,

storeData,

. . .

U3 Database-

Service

queryInventory.start,

storePurchaseData.start

queryInventory.start,

queryData,

Database,

returnData,

. . .

U4 Cloud-

Service

queryInventory.start,

queryData,

storeData,

. . .

queryInventory.start,

queryData,

Database,

returnData,

. . .

Table 6.3.: Shortened results of all steps of the uncertainty impact analysis regarding con�dentiality.

6.5.3. Applying Uncertainty Impact Analysis Regarding Confidentiality

To exemplify the full uncertainty impact analysis, we apply it to the running example

introduced in Chapter 3. This example contains four uncertainty sources that demonstrate

di�erent uncertainty types, namely Connector uncertainty (U1), Behavior uncertainty (U2),

Component uncertainty (U3), and External uncertainty (U4). In the �rst step, software

architects annotate the model with these uncertainty sources, as described in Figure 4.2.

This represents the annotation function 0. We showed exemplary annotation targets, i.e.,

elements from the PCM model in Table 6.2 and repeat them in Table 6.3 for convenience.

Afterward, Algorithm 6.11 propagates the annotated uncertainty sources within the ar-

chitectural model, using the propagation algorithm that �ts the annotated uncertainty.

This represents the architectural uncertainty impact analysis ?�. We showed exemplary

propagation results, i.e., elements of the software architecture that could be a�ected by

the annotated uncertainty in Section 6.3 and summarize them in Table 6.3.

The a�ected elements of the software architecture are mapped to corresponding DFD

nodes. To achieve this, we use the tracing information from the extraction of DFDs based

103

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis

Online Shop
« UsageScenario »

Customer.buyItem

« EntryLevelSystemCall »
PurchaseInterface

.purchaseItem

« ServiceEffectSpecification »

purchaseItem

« SetVariableAction »

processPurchase

…

…

?
U1: User Input

PurchaseInterface.

purchaseItem

purchaseItem.start … processPurchase

processUserData

DatabaseService.
storePurchaseData

…

a

m m m

Figure 6.6.: Informal illustration of the propagation of an uncertainty source in the architectural model (top)

and a Data Flow Diagram (DFD) (bottom) using the annotation function a and the mapping function m.

on the mapping of Seifermann [233]. Every DFD node has an origin within the PCM

model, see Figure 6.2. This represents the mapping function<. We show the results of

this mapping in Table 6.3. Note that the nodes’ names are identical to elements of the

software architecture. This is not by accident but to simplify the later identi�cation of

uncertainty-a�icted elements and con�dentiality violations.

Last, we propagate the uncertainty within in the DFD, starting at each vertex retrieved

from the mapping of a�ected architecture elements, as shown in Algorithm 6.11. This

represents the uncertainty impact analysis in DFDs ?� . The result of this analysis step is

the �nal uncertainty impact set that is shown to the software architect. We shorten the

results of this step in Table 6.3. The full impact set can be found in Appendix B.

To illustrate the propagation path of an uncertainty source, Figure 6.6 informally shows

the propagation of Uncertainty U1. We chose this uncertainty source as it is annotated

to the Customer of the Online Shop and thus has the longest path until it reaches a data

sink. For the sake of brevity, we leave out many details and focus only on the propagation

path. The full example can be found in our data set [98], and in Appendix B. Uncertainty

U1 represents the user input and is annotated to a ProvidedDelegationConnector called

PurchaseInterface. It propagates to an EntryLevelSystemCall in the UsageScenario named

Customer.buyItem and to the StartAction of a SEFF in the architectural model. The actions

are mapped to DFD nodes. Afterward, the uncertainty is propagated in the DFD until a

sink is reached. All DFD nodes are part of the impact set of Uncertainty U1.

104

6.5. Uncertainty Impact Analysis regarding Con�dentiality

1 Behavior Uncertainty Impact on SEFFActionSequenceElement with

2 ID _oEBNYDIXEe-m4c0ChzWfPg (represeting a SetVariableAction).

3 Origin of this impact: Behavior Uncertainty annotated to

4 SetVariableAction "UserDataProcessing" (_oEBNYDIXEe-m4c0ChzWfPg).

5

6 All affected elements (1):

7 SEFFActionSequenceElement (UserDataProcessing, _oEBNYDIXEe-m4c0ChzWfPg)

8

9 Impact set (1):

10 0: SEFFActionSequenceElement (UserDataProcessing)

11 CallingSEFFActionSequenceElement / calling (DatabaseStoreInventory)

12 SEFFActionSequenceElement (Beginning updateInventory)

13 SEFFActionSequenceElement (Ending updateInventory)

14 CallingSEFFActionSequenceElement / returning (DatabaseStoreInventory)

15 ...

Listing 6.1: Shortened output of the uncertainty impact analysis showing the impact of Uncertainty U2.

6.5.4. Tool Support for Uncertainty Impact Analysis

In the introduction of this chapter, we discussed the need for automated analyses to aid the

software architectural design process. Manual propagation of uncertainty is not feasible,

especially in large systems of systems with hundreds of architectural elements or DFD

nodes [102]. This need for automated analysis is also described in Problem P2.

We realize the algorithms described in this chapter as part of our tooling r UIA. Here, we

build on the Palladio tooling [205, 207] that o�ers a meta model, the PCM, and graphical

editor support. Our Java-based open-source implementation of the propagation logic is

integrated into the Eclipse-based tooling, and part of the data set [98].

Here, we included many of the already discussed optimization strategies to speed up the

propagation, e.g., by caching query results or using the extracted DFD to �lter a�ected

architecture elements. Using this approach, all propagation algorithms can be realized as

DFS, which is in O(+ + �), where+ represents the DFD nodes and � represents the edges

[141]. Put simply, we test for each node whether or not it is a�ected by uncertainty, and

then propagate the uncertainty along the data �ow.

Software architects annotate uncertainty sources by calling the analysis interface and

providing the element’s identi�er. The analysis performs a type check to ensure the validity

of the annotation and then propagates the uncertainty without requiring any further user

interaction. The result comprises the annotated elements, the a�ected elements in the

PCM model, and the complete impact set. Listing 6.1 shows an exemplary but shortened

output of r UIA for Uncertainty U2 with uncertainty type, annotation target, and analysis

results. The full output can be found in Appendix B. This output can be used to further

enhance the display of the impact, e.g., by highlighting a�ected areas of DFDs in graphical

viewers or editors [36].

105

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis

We also implemented additional processing to enhance the user experience. As discussed

in Section 6.4, impact sets of uncertainty sources can be a subset of impact sets of other

uncertainty sources. In our running example, the impact set of U2 is a subset of the impact

set of U1 because it a�ects a subgraph of the DAG representing the user input’s processing.

We identify such relations and only return the largest impact sets that are not subsets of

another subset. Formally speaking, the analysis yields an antichain [66] with the partial

order of the subset relation, in which all impact sets are pairwise incomparable.

� Finding: The uncertainty impact analysis can be fully automated based on

the Palladio Component Model (PCM) and the existing tooling of the Palladio

approach. Propagating uncertainty requires minimal additional e�ort by software

architects, as the analysis only requires annotating uncertainty sources.

6.6. Addressing the Uncertainty Awareness Problem

Our approach to uncertainty impact analysis supports software architects in the early

assessment of the impact of uncertainty on con�dentiality. However, it su�ers from the

Uncertainty Awareness Problem (UAP), like many other uncertainty-aware analyses [115].

As introduced in Section 5.6, the UAP hinders the analysis of uncertainty due to the

lack of knowledge about relevant uncertainty sources. Failing the correct identi�cation,

classi�cation, and annotation limits the validity of analysis results, as they can lack both

precision and comprehensiveness. In this section, we demonstrate how to tackle this

problem regarding our uncertainty impact analysis. We connect r ARC
3
N, which was

introduced in Section 5.7, to our impact analysis tooling r UIA. This addresses Problem

P3 and is a step toward end-to-end analysis approaches [273].

To tackle the UAP in uncertainty impact analysis, we need to solve two underlying prob-

lems. First, the analysis and its tooling must receive information about relevant uncertainty

sources and their classi�cation. Second, software architects operating the analysis must

become aware of potential sources and identify appropriate annotation targets. Both prob-

lems arise before the automated analysis is performed. Thus, we extend the uncertainty

impact analysis by an additional identi�cation step prior to the propagation.

After our tooling r UIA has been initialized and all PCM models are loaded, we request

a current list of uncertainty sources from r ARC
3
N. This is possible because r ARC

3
N

provides the uncertainty source catalog in a machine-readable format, as presented in

Section 5.7. This catalog also includes the classi�cation of each source, as shown with

the underlying meta model in Figure 5.3. Software architects use r ARC
3
N to identify

relevant uncertainty sources. As all uncertainty sources in the uncertainty source catalog

have a unique identi�er, they can provide this identi�er to the extended impact analysis.

After resolving the uncertainty source and the classi�cation category Architectural Element
Type, the analysis queries all PCM models to identify matching annotations targets. These

are displayed to the software architects in an interactive interface.

106

6.7. Uncertainty Propagation in Uncertainty Flow Diagrams

1 Enter an id of an uncertainty to check for:

2 > #48

3

4 Select one of these elements.

5 1) "OnPremiseServer" (_qvz80ITgEeywmO_IpTxeAg)

6 2) "CloudServer" (_upfkIITgEeywmO_IpTxeAg)

7

8 Enter line number:

9 > 2

10

11 Analysis completed. Result:

12 ...

Listing 6.2: Exemplary interaction of a software architect with the extended uncertainty impact analysis.

Section 6.6 shows an exemplary interaction prior to the propagation of uncertainty. In the

running example, we have two ResourceContainers that can be a�ected by uncertainty about

the provider’s trustworthiness (U4), represented as uncertainty number 48 in r ARC
3
N.

After annotating this uncertainty source to the CloudServer, the uncertainty impact analysis

is executed. The full result, including the impact set, is returned, similar to Listing 6.1.

This addresses the UAP by providing software architects with a list of possible uncertainty

sources to choose from. Additionally, less expert knowledge about the classi�cation is

required as the interpretation is done automatically. Last, the manual e�ort of searching

the architectural model to identify potential elements to annotate with uncertainty is

reduced. In sum, this demonstrates the feasibility of extending an existing analysis, even

without altering the core propagation algorithms. We stress that other uncertainty-aware

analyses [101, 265, 266] could similarly bene�t from such extension.

� Finding: By connecting the identi�cation and classi�cation of uncertainty to

model-based uncertainty analysis, the Uncertainty Awareness Problem (UAP) can

be addressed. Although this does not fully resolve the challenge of unanticipated

change, it reduces the severity. Approaches like this represent a step toward the

end-to-end analysis of uncertainty.

6.7. Uncertainty Propagation in Uncertainty Flow Diagrams

We conclude this chapter by discussing the generalization of the presented concepts

to tackle related problems from the community of SASs [273]. In the recent past, the

Uncertainty Interaction Problem (UIP) has received increased attention [50, 52, 273]. This

problem arises because uncertainties in software-intensive systems are rarely independent

[52]. Addressing this problem goes beyond handling single uncertainty sources but poses

additional challenges regarding modeling, analysis, and mitigation [50]. Handling the UIP

requires notations to represent and analyze the interaction of heterogeneous uncertainty

107

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis

sources, i.e., uncertainty that di�ers in type and nature. Additionally, this notation must

support horizontal propagation in the same level of abstraction, and vertical propagation

across abstraction levels. This is also summarized in Problem P4.

Uncertainty propagation has been identi�ed early as a possible approach towards handling

uncertainty interactions [50]. However, the few existing approaches tackling uncertainty

propagation focus on homogeneous uncertainties, i.e., uncertainties that are similar in

nature, admit the same representations and are amenable to similar reasoning mechanisms

[49]. In the following, we build on the knowledge about uncertainty propagation in

DFDs, previously presented in this chapter. We de�ne a new notation called Uncertainty

Flow Diagram (UFD) that enables the representation and propagation of heterogeneous

uncertainty sources. Thereby, we generalize the propagation concept introduced in this

chapter and make a �rst step towards comprehensive modeling and analysis of the UIP
4
.

In our running example, we see an uncertainty interaction between Uncertainty U3 and

U4. We discussed this interaction when we introduced the di�erence between primary and

secondary uncertainty in DAGs in Section 5.5. If Uncertainty U3 resolves to a deployment

location that is not in the cloud, Uncertainty U4 about the cloud provider has no e�ect.

Otherwise, the combination of both uncertainty sources is relevant. This represents a

simple uncertainty interaction where the outcome can be understood by investigating all

possible scenarios. However, other interactions could lead to results that go further and

introduce new and unanticipated changes [49, 50]. An example is Znn.com [57], where

uncertainty about the sensor input interacts with the discretization of the input. Here,

the interaction of both uncertainties can lead to false adaption, although both uncertainty

sources on their own would not have a�ected the system behavior [49].

Figure 6.7 shows the simpli�ed UFD meta model [49]. This represents a simpli�ed version

of DFDs [64] or UML activity diagrams [186], extended with information about uncer-

tainty, based on PSUM [184]. The top-level element is the Activity, i.e., a graph whose

nodes and edges are ActivityNodes and ControlFlows, respectively. The graph represents

how the information �ows through the computations performed by a program. Actions
represent behavior. Actions are represented by squares with rounded corners and have

Pins (small white squares) that represent the types of input/output parameters. Each Pin
has a Type. Actions may have an associated Behavior, such as the invocation of a method

that implements the behavior to transform the action’s inputs into outputs. This approach

is similar to the uni�ed modeling primitives [235].

To enable hierarchical modeling and vertical uncertainty propagation, each Action can also

be re�ned by one or multiple Activities that represent its inner workings. At the highest

abstraction level, the whole system can be represented by a single node with input and

output pins, i.e., a black box. Either a Behavior or a set of re�ning internal Activities can

be speci�ed for an Action, but not both. It is also possible to specify multiple internal

4
When I presented the research about uncertainty propagation regarding con�dentiality at SEAMS ’23, I

was asked by Danny Weyns about the application of these concepts to SASs. My answer comprised the

application of models at runtime and the integration into the analysis phase of MAPE-K. However, in

hindsight, Uncertainty Flow Diagrams (UFDs) would have been the perfect answer.

108

6.7. Uncertainty Propagation in Uncertainty Flow Diagrams

ActivityNode

ControlNode DataType UserDefinedType

Action

Activity

Behavior

ConnectableElement

ActivityEdge ControlFlow Guard

Pin

UncertainElement Measure

Uncertainty

MeasurementUncertainty

DesignUncertainty

BeliefUncertainty

DiscretizationUncertainty OccurrenceUncertainty

MeasurableElement

TypedElement Type

* internalActivity

1

*

1

*
* *

*
0..1

*
*

0..1 output
1 source

0..1 input
1 target

1 output 1..* output

1 input 1..* input

* 1

0..1
*

*

Figure 6.7.: Simpli�ed meta model of the Uncertainty Flow Diagram (UFD) notation.

activities that represent alternatives. This enables the expression of structural uncertainty

as variations, which is common to represent design uncertainty [255].

A ControlFlow is represented by a directed arrow that connects the outgoing Pin of an

Activity with the incoming Pin of another Activity. ControlFlows may include Guards that

have to be satis�ed for the information to �ow between the connected Pins, or ControlNodes.
When more than one Guard is speci�ed, they all need to be satis�ed for the ControlFlow to

take place. UFDs enable the explicit representation of uncertainty, with the goal of dealing

with the interactions between uncertainties that happen when making computations.

UFDs allow the speci�cation of individual uncertainties associated with Pins or with

Actions. Each uncertainty can be of a di�erent type. This includes the common uncertainty

types Measurement Uncertainty, Discretization Uncertainty, Occurrence Uncertainty, Design
Uncertainty, and also Belief Uncertainty [255]. Note that these types di�er from the

uncertainty types when only focusing on con�dentiality. Each uncertainty can have an

associated Measure, which also has a Type. One way to assess a Measurement Uncertainty
is in terms of the accuracy of the measurement, which is normally expressed by means of

a real number that represents the possible variation of the nominal value of the parameter,

i.e., its estimated standard deviation. Belief Uncertainty is normally expressed by a real

number between 0 and 1 representing the likelihood that the stated fact is true, expressed

as a probability. Alternatively, uncertainty can be expressed by de�ning multiple Internal
Activities as a variation of the behavior of a single Action which is used to express Design
Uncertainty. This also enables the expression of additional uncertainty types if they can be

denoted either quantitatively using an associated Measure or structurally using alternative

internal Activities.

109

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis

compare()

r : Real

t : Real

result : Boolean

«measurement uncertainty»
+ measure: Real
«discretization uncertainty»
+ measure: Real

«measurement uncertainty»
+ measure: Real
«belief uncertainty»
+ measure: Real

«measurement uncertainty»
+ uncertainty : Real

sense() «design uncertainty»

internalActivity

«measurement uncertainty»
+ uncertainty : Real

sense_OnlyRead sense_ReadAndProcess

read()

preprocess()

read()

Figure 6.8.: An Uncertainty Flow Diagram (UFD) showing heterogeneous uncertainty sources and hierarchi-

cal modeling.

Figure 6.8 shows an exemplary UFD. The compare Action compares a sensor value r to a

threshold t to decide whether or not the adaption is triggered. As described previously,

both values are a�ected by Measurement Uncertainty. The input r is additionally a�ected

by Discretization Uncertainty, and the uncertain correctness of the result is thus subject

to Belief Uncertainty. These uncertainties are attached to the matching Pins and can be

expressed using Measures, e.g., the degree of belief, or the variation of the measurement

[184]. Additionally, this example shows Design Uncertainty in the sense Action. Here, two

versions are possible, depending on whether additional preprocessing is used. This can

a�ect the Measurement Uncertainty in r and is represented using Internal Activities.

In sum, this notation enables the expression of heterogeneous uncertainty sources and

their propagation, both horizontally and vertically. Thereby, UFDs are still close to the

uni�ed modeling primitives [235] or DFDs
5
. The propagation of uncertainty in UFDs is

similar to the propagation in DFDs, i.e., following all edges of a node until a sink is reached.

Although UFDs are a promising approach to generalize the propagation concept to analyze

more than con�dentiality, this still represents an early proposal [273]. Future research

in this direction is required to create comprehensive and tool-supported modeling and

analysis approaches to address the UIP.

5
This research started at the 2023 Bertinoro research seminar on uncertainty in SASs. Our group consisted

of Javier Camara, Diego Perez-Palacin, Antonio Vallecillo, Maribel Acosta, Nelly Bencomo, Radu Calinescu,

Simos Gerasimou, and myself. After discussing the Uncertainty Interaction Problem (UIP) for days, we

were surprised how concise Uncertainty Flow Diagrams (UFDs) can be.

110

6.8. Assumptions and Limitations

6.8. Assumptions and Limitations

In this section, we discuss the assumptions and limitations of the di�erent approaches to

uncertainty propagation and impact analysis presented in this chapter. We also provide our

reasoning on whether limitations can become critical when applying the approaches.

Using data flow diagrams We use DFDs to investigate con�dentiality as proposed by

other work [226, 236, 241]. Although this simpli�es the propagation algorithms and pro-

vides a widely used and well-known foundation for our work, it limits the generalizability.

The uncertainty propagation in DFDs is only de�ned for this notation and the architectural

propagation yields elements that can be represented by DFD elements. This limitation is

similar to the limitation of focusing on con�dentiality, discussed in Section 5.8. However,

we argue that our �ndings about the propagation of uncertainty are at least partially

generalizable, as shown with the de�nition of UFDs in Section 6.7.

Choice of architectural description language We choose the ADL PCM to de�ne our

algorithms for the architectural uncertainty impact analysis. The PCM is well known [243]

and easy to extend. Nevertheless, this limits the generalizability to other descriptions

of software architecture like UML diagrams [186]. We argue that the foundation of the

propagation, our classi�cation de�ned in Chapter 5, is general enough to also de�ne

propagation rules for other ADLs. Additionally, the architectural impact analysis is limited

by the speci�ed annotations targets of uncertainty sources. Here, the same argument can

be made, that extending the analysis to other architectural elements based on the provided

propagation algorithms is possible and should require reasonable e�ort.

Correctness of propagation rules and of the mapping We assume the correctness of the

propagation rules for architecture-based change impact analysis from the KAMP approach

[46, 210, 211]. We also assume the appropriateness of the mapping from the PCM to DFDs

[233, 234, 236]. Erroneous propagation or mapping rules could decrease the validity of the

results of our uncertainty impact analysis. However, both represent well-validated and

well-published research approaches.

Overestimation of the impact set Our uncertainty impact analysis overestimates the

uncertainty impact set, as discussed in Section 6.3. This is intentional as we argue that a

high recall is more important than a high precision in the early assessment of uncertainty

[102]. However, the usefulness of the impact set depends on the analyzed architectural

model. Architectural models with only a few independent data �ows are more likely to

yield imprecise results, as the majority of the software system would be a�ected by the un-

certainty sources. We argue that realistic software systems comprise enough independent

data �ows [227] to apply the analysis with satisfying results.

111

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis

Propagating uncertainty until a sink is reached The uncertainty impact analysis in DFDs

propagates uncertainty starting at a speci�ed node by following all outgoing data �ows

until a sink is reached. Similarly to the architectural uncertainty impact analysis, this

overestimates the impact of uncertainty. For instance, if at one point in the DFD, every data

�ow is encrypted, this limits the impact of previous uncertainties about the encryption.

This is comparable to approaches to reduce uncertainty during operation, e.g., robots

that use visual markers to reduce the uncertainty about their location [51]. However, we

ignore such uncertainty reduction and propagate uncertainty until the end of each data

�ow. Considering such interdependence of uncertainty and con�dentiality would increase

the precision but also require to already consider con�dentiality requirements in the

uncertainty propagation, which would increase the manual modeling e�ort. Nevertheless,

this represents an interesting direction for future research.

Propagating unknown uncertainty sources Similarly to the limitation of classifying un-

known uncertainty sources discussed in Section 5.8, we can also not propagate them.

Software architects have to be at least aware of an uncertainty source in order to annotate

and to propagate the uncertainty. The connection of our identi�cation approach, presented

in Section 5.6, to our uncertainty impact analysis can partially address this limitation.

Providing software architects with an uncertainty source catalog that can be propagated

reduces the impact of the unknown. Nevertheless, we cannot assume that all required

information is available as the underlying challenge of unanticipated change remains.

Querying annotation targets By connecting our identi�cation approach, presented in

Section 5.6, to our uncertainty impact analysis, we simplify the annotation of uncertainty

sources. However, the querying of elements of the software architecture that match

a selected uncertainty source only considers the category Architectural Element Type.
Including further categories like the Location could enhance the precision of annotations

targets recommended to the software architect, but could also cause false negatives. Further

research is required to enhance the recommendation and explanation of uncertainty [26].

We argue that our initial �lter already greatly reduces the number of matching uncertainty

sources and is thus helpful.

Solving the uncertainty interaction problem UFDs represent a notation to express and

propagate di�erent uncertainty types to tackle the UIP. Nevertheless, this does not fully

solve the challenge of uncertainty interactions [50]. Challenges regarding tool-supported

modeling, the transformation between di�erent notions, and automated analysis remain.

However, UFDs represent a �rst step for further research in this direction [49, 273].

112

6.9. Summary and Outlook

6.9. Summary and Outlook

In this chapter, we presented di�erent approaches to uncertainty propagation to de�ne

an uncertainty impact analysis regarding con�dentiality. This represents our second

Contribution C2 and provides an answer to ä Research Question 2.

First, we discussed the representation of uncertainty in architectural models to address

Problem P1. We presented a distinction between uncertainty sources and their impact
and related this terminology to architectural models and DFDs. We introduced a meta

model of DFDs under uncertainty that relates the di�erent uncertainty impact types to

DFD elements. Last, we discussed where uncertainty sources can be annotated within the

PCM to enable architectural uncertainty propagation.

To address Problem P2, we combined uncertainty propagation in architectural models with

propagation along the data �ow in DFDs. First, we discussed the relation of architecture-

based change impact analysis [46] and uncertainty impact analysis. Afterward, we pre-

sented propagation algorithms for each uncertainty type described in our classi�cation,

introduced in Chapter 5. We described how to map the propagation results to DFDs and

to further propagate uncertainty following the �ow of data. Hereby, we also provided a

formal foundation based on DAGs and induced subgraphs that represent the impact of

uncertainty. We explained this impact analysis using our running example and introduced

our tooling r UIA to automate uncertainty impact analysis.

Problem P3 describes the UAP regarding uncertainty impact analysis, i.e., the lack of

knowledge about uncertainty sources to propagate. We addressed this problem by com-

bining the identi�cation approach, introduced in Section 5.6, with the uncertainty impact

analysis. Regarding the tool support, this meant combining r ARC
3
N with r UIA. The

resulting analysis simpli�es both the identi�cation of relevant uncertainty sources and

the identi�cation of annotation targets.

Last, we generalized the �ndings on the propagation of uncertainty in DFDs to better

understand the UIP, as discussed with Problem P4. To analyze uncertainty interactions,

we de�ned the notation of UFDs that can express heterogeneous uncertainty sources and

support both horizontal and vertical propagation of uncertainty. This notation provides a

foundation for further modeling and analysis approaches to tackle the UIP.

ä Research Question 2 asked about the propagation of previously classi�ed uncertainty

sources to predict their impact on con�dentiality. We observe that a comprehensive

approach requires both the propagation in architectural models and DFDs. Our answer

thus comprises means for modeling uncertainty in both representations and propagation

algorithms for architectural models based on the PCM and also DFDs. To connect the

resulting uncertainty impact analysis regarding con�dentiality to classi�ed uncertainty

sources, we discussed the connection of this approach to uncertainty source catalogs.

In sum, this enables software architects to assess the impact of uncertainty in existing

architectural models with regard to con�dentiality.

113

6. Uncertainty Propagation to Enable Uncertainty Impact Analysis

The central bene�t of early impact analysis is cost reduction due to the early detection

of potential problems [32]. Here, uncertainty impact analysis can be applied even earlier

than design time con�dentiality analysis [236], because propagating uncertainty does

not require details about data processing or con�dentiality requirements. Nevertheless,

propagating uncertainty helps software architects in mitigating uncertainty early [2].

Architecture models can be annotated with uncertainty sources from existing collections

[104] which helps in the documentation and to raise awareness. The analysis helps predict

and mitigate con�dentiality violations. Using a con�dentiality analysis for this purpose

would require software architects to understand and model the impact of uncertainty man-

ually which requires more e�ort and expertise. Note that we do not state that uncertainty

impact analysis replaces the need for con�dentiality analysis. However, it can be used

for an initial, coarse-grained assessment, as discussed in our procedure, introduced in

Section 4.1. Last, the calculated models of our analysis can also be used for regression

testing or to handle uncertainty at runtime [65].

To conclude, we want to brie�y discuss another application of uncertainty propagation.

We investigated uncertainty in coupled models [2], e.g., in the automotive domain, where

experts from di�erent areas work together. They require di�erent views, e.g., a system

architecture, an electrical topology with hardware components, or simulation results.

To keep these views consistent, the underlying models are coupled using consistency

speci�cations [139]. Based on the classi�cation of uncertainty in Cyber-Physical System

(CPS), we derived the category Locus that is similar to Architectural Element Type. This

category also de�nes where uncertainty can be annotated and how it propagates through

the models. Although this is based on consistency speci�cations and not architectural

change impact analysis, uncertainty propagation can be applied and helps in mitigation.

� Finding: Interpreting uncertainty as unanticipated change enables its propaga-

tion not only based on change impact analysis, but also using other methods of

change propagation, such as consistency speci�cations. Uncertainty propagation

is a powerful technique to better understand the e�ect of unanticipated changes,

or even to detect new uncertainty, e.g., due to uncertainty interactions.

We will revisit uncertainty propagation and interaction in # Chapter 7: Uncertainty-
AwareData FlowAnalysis to Identify Con�dentiality Violations. There, we present

di�erent approaches to con�dentiality analysis under uncertainty that build on the �ndings

of this chapter. Especially the concept of uncertainty interactions helps in optimizing the

uncertainty-aware analysis of con�dentiality. Both the uncertainty impact analysis and

con�dentiality analysis under uncertainty are based on our uncertainty classi�cation, pre-

sented in# Chapter 5: Identi�cation and Classi�cation of Uncertainty Regarding
Con�dentiality. An overview of the procedure that connects all of these steps is given

in # Chapter 4: Overview. Last, # Chapter 9: Evaluation presents the evaluation of

all contributions, including the uncertainty impact analysis presented in this chapter.

114

6.10. In Simpler Words

6.10. In Simpler Words

Uncertainty has many de�nitions. Some de�ne uncertainty as a lack of knowledge about

a software system and its environment, while others refer to uncertainty as unanticipated

change, i.e., changes in a software system that have not been foreseen. Our goal in

this chapter is to de�ne an uncertainty impact analysis. When experts become aware

of an uncertainty source, they want to better understand its potential impact. Not all

uncertainty sources have severely bad e�ects, many do not even a�ect con�dentiality. Our

classi�cation, de�ned in Chapter 5, helps in an early inspection of an uncertainty source.

However, to really understand the impact, they need to look at the software system, and

analyze its software architecture and data �ows. Our contribution in this chapter supports

the experts in this activity and even automates the majority of it.

We call the core idea of uncertainty impact analysis uncertainty propagation—both are so

closely related that we even use them synonymously. Propagation refers to the uncertainty

being forwarded or transmitted through a software system. For instance, if the data

processing of a system part is uncertain, this may also a�ect other system parts where

the data �ows. The uncertainty of the data processing propagates through the software

system. Here, we build on the �nding that uncertainty can be understood as unanticipated

change, as described above. Other researchers de�ned architecture-based change impact

analysis that propagates change through software systems. For instance, if we rename a

signature in an interface, we must also rename the calls to this signature in all methods.

This propagation, from a changed element to other elements that also have to adapt, is

called change propagation, and the result of such propagation is called impact set. Change

impact analysis can estimate the impact set—and we build on this to estimate the impact

set of uncertainty.

We de�ne many algorithms to propagate uncertainty within the software architecture.

These algorithms precisely describe which elements of a software architecture can be

indirectly a�ected by an uncertainty source. Here, we build on the classi�cation category

Architectural Element Type, presented in Chapter 5. Afterward, we move from the software

architecture to Data Flow Diagrams (DFDs) and propagate the impact of uncertainty along

all potentially a�ected data �ows. This helps us avoid overlooking potential con�dentiality

violations due to impacted data �owing to another part of the software system. Remember

the example of the data processing that could cause problems somewhere else. We express

the �nal impact set using the DFD of the software system.

Building on this analysis, we describe several extensions. For example, we relate the

previously discussed awareness problem of uncertainty to the analysis. Although our

impact analysis helps to better understand the e�ect of uncertainty, it requires experts

to be aware of uncertainty sources. We address this limitation by providing them with

uncertainty source catalogs, which can be propagated. Last, we discuss the generalization of

our uncertainty propagation. We propose Uncertainty Flow Diagrams (UFDs) to represent

di�erent uncertainty types in a single diagram type. This notation also helps to better

understand uncertainty interactions, which have been introduced in Chapter 5. In the future,

approaches like this will hopefully be helpful in many related research directions.

115

7. Uncertainty-Aware Data Flow Analysis
to Identify Confidentiality Violations

In this chapter, we present the third Contribution C3. This contribution covers the last

activity of the procedure shown in Section 4.1, the con�dentiality analysis with respect to

uncertainty. We discuss the representation of uncertainty as a �rst-class entity in data �ow

analysis and introduce four approaches for uncertainty-aware con�dentiality analysis.

Software systems are becoming increasingly complex, e.g., in Industry 4.0 [34] or auto-

motive systems [2]. As stated previously, ensuring security-related quality properties

like con�dentiality becomes a major challenge. Violations cannot only have legal conse-

quences [122] but also a�ect user acceptance [271]. As proposed by Privacy by Design
[224], con�dentiality should be considered early to avoid costly repairs [32]. This can also

seen with the new “Insecure Design” category from the OWASP Top 10 [192] list, which

contains the top 10 categories of security problems for web applications.

This problem has been addressed with design time con�dentiality analysis. By analyzing

data �ows [236] or potential attack paths [267, 268] in modeled software architectures,

con�dentiality requirements [105] can be evaluated early. We discussed these approaches

in previous chapters, especially in Chapter 6. There, we built on the transformation

from the Architectural Description Language (ADL) Palladio Component Model (PCM) to

Data Flow Diagrams (DFDs) in order to propagate uncertainty regarding con�dentiality.

This transformation originates from an architecture-based data �ow analysis to identify

con�dentiality violations already at design time [233, 234, 236]. Based on an architectural

description of the software system, violations of provided con�dentiality requirements

[105] can be identi�ed. This involves the model-based propagation of characteristics

within the software architecture, which describe the �owing data and its properties

regarding con�dentiality. In sum, these approaches enable software architects to assess

the con�dentiality of software systems.

However, in early development and in complex systems of systems, uncertainty exists

about the software architecture and its environment [2]. Our running example from

Chapter 3 shows multiple uncertainty sources, e.g., user input (U1), data processing (U2),

or deployment (U3). When ignored, these uncertainties a�ect both the precision and

comprehensiveness of the results of con�dentiality analysis [97, 99, 104]. The lack of

information reduces the quality of the model’s representation of the software system.

This results in less accurate or even wrong predictions, made on the basis of the model.

Although uncertainty-aware analyses of software architectures exist [70], they usually

focus on other quality properties like performance [243].

117

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

To address this limitation, we present multiple approaches to architectural con�dentiality

analysis under uncertainty. We build on the �ndings about DFDs and uncertainty from the

previous chapters to de�ne data �ow analyses that identify violations of con�dentiality

requirements with respect to uncertainty. Taking known uncertainty into account helps

in making more comprehensive statements about a software system’s con�dentiality. The

handling of uncertainty can either be included as part of the analysis in a white-box manner

or delegated to an uncertainty-aware framework [2]. Here, we keep the architectural

abstraction to enable design time analysis. Similarly to the previous chapter, we also

propose automated analysis and tool-supported modeling as “detecting con�dentiality

issues manually is not feasible” [234].

In sum, to de�ne uncertainty-aware data �ow analysis, advances both in modeling and

analysis of con�dentiality and uncertainty are required. As proposed by Garlan [80], we

thereby include uncertainty as a �rst-class concern in the system design. We present

two approaches for con�dentiality analysis that are tailored to single uncertainty types,

e.g., environmental, or structural uncertainty, as well as two uncertainty type-agnostic

approaches. We also discuss common challenges and solutions in representing uncertainty

in data �ow analysis. We summarize this research concern of uncertainty-aware data �ow

analysis regarding con�dentiality in the third research question:

ä Research Question 3: How to analyze con�dentiality requirements using

architectural data �ow analysis with respect to uncertainty within the model?

The remainder of this chapter is structured as follows: First, we discuss the problem state-

ment. We then introduce a framework for architectural data �ow analysis. This framework

builds on the architecture-based data �ow analysis of Seifermann [233] and Seifermann

et al. [237], but extends and simpli�es both the modeling and the analysis. It lays the

foundation for the further analysis approaches presented in this section. Afterward, we

discuss how to represent uncertainty in data �ow analysis. Depending on the approach and

the use of existing information, di�erent statements about con�dentiality and uncertainty

can be derived. Building on this, we present two approaches for uncertainty type-speci�c

data �ow analysis. The �rst uses fuzzy inference [140] together with data �ow analysis

to consider environment uncertainty. The second extends the architectural optimization

approach PerOpteryx [143, 144] to consider the relation of structural uncertainty and

con�dentiality. Additionally, we present an approach to tracing uncertainty in data �ow

analysis and an uncertainty type-agnostic approach to data �ow analysis. Last, we discuss

the complexity of the di�erent uncertainty-aware data �ow analysis approaches. We close

the chapter by presenting assumptions and limitations and giving a summary.

� Literature: This chapter is based on the following (co-) authored publications:

[IEEE SEAA 2022], [Springer ECSA 2022], [IEEE ICSA-C 2023],

[Springer ECSA 2024]

118

7.1. Problem Statement

7.1. Problem Statement

We summarize the problems P1 – P3 addressed by Contribution C3. Finding solutions to

these problems helps to provide a comprehensive answer to ä Research Question 3.

P1: Extending data flow analysis to represent uncertainty To consider uncertainty in

architectural data �ow analysis, we �rst require an extensible framework for data �ow

analysis [36]. This framework lays the foundations for any type of uncertainty-aware data

�ow analysis that goes beyond black-box approaches [266]. By black-box approaches, we

mean approaches to con�dentiality analysis that do not consider uncertainty as a �rst-

class entity but encapsulate an existing analysis into an uncertainty-aware framework.

Additionally, we need to understand how uncertainty can be represented in con�dentiality

analysis [101]. This requires relating previous �ndings on modeling and propagating

uncertainty in architectural models to data �ow analysis. We stress that there is no single

solution to this problem but various solutions that exhibit di�erent bene�ts and drawbacks.

A common baseline is envisaged to understand their characteristics and applications.

P2: Data flow analysis tailored to specific uncertaint types To better understand the

relation of uncertainty and con�dentiality on architectural abstraction, we �rst strive

to de�ne architecture-based data �ow analysis tailored for speci�c uncertainty types.

Here, we focus on uncertainty types that are common in software architectures. This

includes structural uncertainty due to Architectural Design Decisions (ADDs) [124, 266]

and also environmental uncertainty that can indirectly a�ect con�dentiality, e.g., due

to access control decisions under uncertainty [37, 41]. Although such focused analysis

approaches are unable to analyze all uncertainty types that can a�ect con�dentiality, they

still provide precise results regarding single uncertainty types, especially compared to

uncertainty-unaware con�dentially analysis [233]. Additionally, they present an important

step towards uncertainty type-agnostic data �ow analysis [101].

P3: Uncertainty type-agnostic data flow analysis Ultimately, a comprehensive approach

is required to analyze all uncertainty types that are relevant regarding con�dentiality.

Building on the �ndings from P1 and P2, this approach shall be able to handle all un-

certainty types described in the uncertainty classi�cation, presented in Chapter 5. This

uncertainty type-agnostic approach needs modeling support for expressing uncertainty in

architectural models that goes beyond the annotation of uncertainty sources required for

uncertainty impact analysis, discussed in Chapter 6. A common approach to expressing

uncertainty in architectural models is modeling variation scenarios [255, 265]. However, an-

alyzing variations—and especially combinations of variations—can quickly jeopardize the

scalability [264, 268]. Building on previous �ndings regarding the Uncertainty Interaction

Problem (UIP) in DFDs can reduce the analysis complexity.

119

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

7.2. A Framework for Architectural Data Flow Analysis

In this section, we build on an approach for architecture-based data �ow analysis [232,

233, 234, 235, 236] to present our extensible framework for architectural data �ow analysis

[36]. This lays the foundation for further analysis approaches—which are not limited to

uncertainty only—and also addresses Problem P1.

In general, there are two ways to approach uncertainty-aware analysis [2, 194]. We use

the common di�erentiation between white-box analysis and black-box analysis compo-

sition [111, 253]. A black-box approach extends an analysis without knowing about the

implementation details of the analysis and only uses its interfaces. A white-box approach

can use the internal details and data structures for the composition. Both approaches have

bene�ts and drawbacks, e.g., regarding expressiveness and maintainability. Regarding

uncertainty, we favor white-box analysis approaches as they enable the representation of

uncertainty as a �rst-class entity within the analysis [80]. However, this does not imply

that black-box approaches are not feasible [266]. To enable white-box analysis, we require

an extensible and stable analysis framework.

Regarding the architectural data �ow analysis, the original Prolog-based implementation

of Seifermann [233] was hard to maintain and had a high resource demand, which severely

limits the applicability for large software systems. Although the analysis already used a

model of a DFD [64] as an intermediate representation, it did not continue to follow the

idea of using DFDs as the primary analysis artifact. With appropriate tool support, DFDs

represent a powerful and commonly used mechanism for threat analysis [25] that helps in

correctly identifying security-related issues [226]. Thus, we revisited all aspects of the

analysis like the transformation of PCM models to DFDs, and the label propagation, and

also reimplemented the analysis from scratch [231]. This results in a more scalable and also

easier-to-extend analysis framework [36]. Additionally, the focus on DFDs as the primary

analysis artifact simpli�es the connection to uncertainty, as discussed in Section 5.5. We

introduced some of the underlying concepts already in Chapter 2. For the scope of this

work, we summarize the internal data structures and the analysis procedure and refer to

our publications for more details [36, 105, 231].

7.2.1. Representing Data Flows in Data Flow Analysis

As discussed in Section 5.5, DFDs can be represented as Directed Acyclic Graphs (DAGs).

Using a simple graph structure simpli�es the reasoning and the automated analysis regard-

ing con�dentiality. We support the transformation of DFDs, which are based on the uni�ed

modeling primitives [235], and also of PCM models [207] to DAGs. The former enables the

manual de�nition of DFDs, and the latter extends the integration of architectural models

in the data �ow analysis [234].

To represent data �ows and their relations in DAGs, we use the notion of a Transpose

Flow Graph (TFG). Flow graphs represent the �ow from one source to one or multiple

sinks [141]. However, regarding con�dentiality, we are more interested in the relations of

120

7.2. A Framework for Architectural Data Flow Analysis

make
purchase

process
purchase

store
data

pseudo-
nymized

data

mapping
table

process
data

store data

Figure 7.1.: Two Transpose Flow Graphs (TFGs) representing two independent data �ows.

data �ows from multiple sources to a single sink. An example is the joint �ow of multiple

sensitive data �ows into a single sink, e.g., pseudonymized data �owing together with

information about the relation of the data to its originating users, which could violate

con�dentiality. We use these transposed semantics of a �ow graph, thus creating TFGs.

Reasoning about multiple, smaller TFGs instead of one large DAG provides further bene�ts.

It represents a divide and conquer approach, as the data �ows represented by TFGs are

independent and can thus be analyzed independently [233]. This simpli�es the analysis

and increases its scalability [231]. It is also more intuitive because con�dentiality analysis

represents identifying critical data �ows to a single destination, i.e., critical TFGs.

Figure 7.1 shows two TFGs. The left TFG represents a simple data �ow from the running

example presented in Chapter 3. The right TFG represents the combination of data �ows

from two sources into a single sink, as discussed above with pseudonymized data. We

can see, that the data �ows in TFGs inherit all properties from DAG, i.e., being irre�exive,

asymmetric, and transitive. Additionally, starting from the single sink, all other vertices are

reachable without cycles. We can also see, that the partition in multiple, independent TFGs

simpli�es the reasoning. In the example shown in Figure 7.1, both store data processes

could be represented by the same call to a data base. However, both data �ows are

independent, represent di�erent data types and data processing, and also could cause

di�erent con�dentiality violations. For instance, storing data without encryption could

violate the con�dentiality in the store data process in the left TFG, while process data could

violate the con�dentiality due to a broken pseudonymization in the right TFG.

� Finding: Transpose Flow Graphs (TFGs) show independent data �ows of a

Directed Acyclic Graph (DAG). Following the principle of divide and conquer,

this simpli�es reasoning about the variety of data �ows in a system.

To enable con�dentiality analysis, we connect the concept of DAGs and TFGs to the

uni�ed modeling primitives [235], introduced in Section 2.5. Here, Nodes and Flows can

be represented directly by vertices and edges, respectively. Additionally, vertices can be

annotated with Labels to represent their characteristics regarding con�dentiality, called

node labels. Examples of such labels are the deployment location or the role of a user.

The Behavior of a Node, represented by one or multiple Assignments can also be directly

mapped to the vertices of a TFG. Assignments can change the characteristics of �owing

121

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

make
purchase

process
purchase

 store
data

CloudCustomer

set Data.Sensitive = TRUE forward userData
set Encryption.Encrypted = TRUE

Figure 7.2.: A simple Transpose Flow Graph (TFG), annotated with node labels and node behaviors.

data, represented by data labels. For example, the behavior of the process purchase vertex

in Figure 7.1 could include setting an encrypted label to represent the encryption of all data

�ows. Last, Pins are not directly represented in TFGs but in�uence their construction. For

instance, multiple Flows out of a single Pin represent alternatives that yield a TFG for each

alternative �ow. Again, for the scope of this work, we do not detail the transformation of

DFDs to TFGs, but refer to the original publications [36, 236].

Figure 7.2 shows the left TFG from Figure 7.1, annotated with node labels and behaviors,

following the notation of the data �ow analysis framework [36]. The exemplary node
labels show which vertices represent functionality of the Customer, or of components

deployed in the Cloud. Note that there is no general rule on which characteristics can and

should be represented by node labels—any information, that can be relevant for analyzing

con�dentiality, can be included within the model [233]. The exemplary node behaviors

show how the data labels can be altered. First, the make purchase vertex sets the label

Data.Sensitive. Then, this label is forwarded in the process purchase vertex, where also the

label Encryption.Encrypted is added. Both labels �ow to the store data vertex. In natural

language, this simple TFG represents sensitive user data that �ows from a user into a

database that is deployed in the cloud, while being encrypted �rst. This notion simpli�es

reasoning about data �ows regarding con�dentiality and can also be applied to large DFD

with thousands of nodes [231].

Con�dentiality requirements can be formulated in the form of data �ow constraints [105].

These constraints restrict selected data labels to never �ow to selected node labels. In the

example shown in Figure 7.2, an exemplary data �ow constraint could be that there shall

not be a data �ow of sensitive but unencrypted data to the cloud. Due to the encryption

in the vertex process purchase, this data �ow constraint is satis�ed. Thus, this constraint

would not cause a con�dentiality violation. More complex constraints that consider the

multiple �ows and their properties are also possible [36, 105].

� Finding: Transpose Flow Graphs (TFGs) can be annotated with characteris-

tics that represent system properties relevant for con�dentiality analysis. These

characteristics comprise node labels, which are annotated to vertices, and data

labels, which are altered by a node’s behavior. Con�dentiality requirements can

be represented as data �ow constraints that compare node and data labels.

122

7.2. A Framework for Architectural Data Flow Analysis

On Premise Server

OnlineShop
Customer

SEFF: processPurchase()

Encrypt: SetVariableAction
userData.encrypted := true

(2)(1)

(1)

(3)

(3)
(5)

(4)
(5)

On Premise

processPurchase
.start

Customer
Customer

processPurchase
(4)

processPurchase
.stop

Customer

On Premise On Premise On Premise(2) (2) (2)

set Data.Sensitive = TRUE forward userData
set Encryption.Encrypted = TRUE

forward userData forward userData

Figure 7.3.: Simpli�ed Palladio Component Model (PCM) instance and the corresponding Transpose Flow

Graph (TFG) with annotated node labels, data labels, and numbered transformation traces.

Although the manual modeling of DAGs with con�dentiality characteristics is possible

[36], we focus on the automated extraction of DAGs from PCM models. We introduced

this extraction in Section 6.3. For instance, ExternalCallAction, SetVariableAction, and

EntryLevelSystemCalls are represented by DFD nodes and thus also by TFG vertices. Addi-

tionally, we extract all con�dentiality-related characteristics from the PCM and represent

them as node labels and data labels.

Figure 7.3 shows a simpli�ed PCM model based on the running example. The model is

annotated with con�dentiality-related labels that represent characteristics of data storage

like On Premise and data processing like the encryption of userData in the SetVariableAction.

In the lower half, we show the extracted TFG. We annotate numbers to represent the

transformation traces from the PCM to the TFG. For every node, we perform a lookup

of node labels, which can be annotated, e.g., to ResourceContainers, or UsageScenarios.
An exemplary lookup in the PCM model goes from the processPurchase vertex to the

Online Shop component via the deployment to the On Premise Server resource which is

annotated with On Premise. Additionally, we convert the modeled system behavior to

assignments representing the node’s behavior, e.g., the encryption of userData. The default

is the forwarding of labels, which represents the �ow of data without further e�ects. The

transformation considers all information that is relevant for con�dentiality analysis, e.g.,

data processing. Other information is not transformed, e.g., components and servers do

not cause additional elements in the TFG. This enables a system view from the perspective

of the data. We store all traces to the originating PCM elements during the transformation.

This enables the evaluation of more advanced constraints in the data �ow analysis.

In sum, TFG represent a simple yet powerful way to reason about data �ows, that can

be extracted from PCM models. By adding node and data labels, they can represent the

characteristics of the software system relevant for con�dentiality analysis. Data �ow

constraints can compare these labels to identify con�dentiality violations.

123

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

Algorithm 7.1 Algorithm for vertex evaluation in Transpose Flow Graphs (TFGs)

1: procedure evaluateVertex(vertex, graph)

2: vertex .nodelabels← evaluateNodeLabels(vertex) ⊲ Collect node labels

3: predecessors← getPredecessors(vertex)
4: vertex .datalabels← ∅
5: for predecessor ∈ predecessors do ⊲ Collect data labels using recursion

6: vertex .datalabels← vertex .datalabels ∪ evaluateVertex(predecessor, graph)
7: end for

8: result ← evaluateNodeBehavior(vertex, vertex .datalabels)
9: return result

10: end procedure

Algorithm 7.2 Algorithm for label propagation in Transpose Flow Graphs (TFGs)

1: procedure labelPropagation(tfgs)
2: for tfg ∈ tfgs do ⊲ Iterate over all independent TFGs

3: sink ← getSink(tfg) ⊲ Start the evaluation at each sink

4: evaluateVertex(sink, tfg)
5: end for

6: return tfgs
7: end procedure

7.2.2. Label Propagation to Enable Scalable Confidentiality Analysis

Annotated TFGs help to reason about data �ows in software systems. However, DFDs

of realistic software systems contain several hundreds of nodes [102]. Label propagation
has been proposed to automate the analysis, as manual analysis is not feasible [234]. Put

simply, label propagation propagates all data labels through all nodes of all TFGs with

respect to the behavior of the nodes.

Algorithm 7.1 shows the recursive algorithm of the vertex evaluation in label propagation,

which resembles DFS. For each vertex, we �rst retrieve the vertex node labels in Line 2.

To simplify the algorithm, we denote the side e�ect of storing the labels in the vertex

�elds. Afterward, we calculate the data labels that represent the output of the vertex and

also store them in the corresponding vertex. This is achieved by recursively calling the

calculation logic of all previous vertices and using the hereby calculated output labels

as input, as shown in Line 6. Before returning, we apply the behavior of the evaluated

vertex to the input data labels in Line 8, e.g., altering the encryption label. Note that we do

not consider cycles in the propagation logic because TFGs represent DAGs. Based on the

evaluation of vertices, Algorithm 7.2 shows the label propagation. Here, we handle each

TFG separately as every TFG represents independent data �ows, and use the evaluateVertex
algorithm for the single sink of each TFG.

124

7.3. Representing Uncertainty in Data Flow Analysis

make
purchase

process
purchase

 store
data

CloudCustomer

make
purchase

process
purchase

 store
data

CloudCustomer

Data.Sensitive Data.Sensitive

make
purchase

process
purchase

 store
data

CloudCustomer

Data.Sensitive Data.Sensitive
Encryption.
Encrypted

make
purchase

process
purchase

 store
data

CloudCustomer

Data.Sensitive Data.Sensitive
Encryption.
Encrypted

Data.Sensitive
Encryption.
Encrypted

(1) (2)

(3) (4)

Data.Sensitive

Figure 7.4.: Initial state, and intermediate and �nal results of the label propagation in a simple Transpose

Flow Graph (TFG). Node labels are highlighted gray, data labels have a dashed border.

Figure 7.4 shows four states of the label propagation in the simple TFG introduced with

Figure 7.2. First, we only display all node labels as these are not subject to label propagation

but �xed, and also the label added in the make purchase vertex. This label is propagated to

the process purchase vertex in the second step. By evaluating the behavior of this vertex,

the label Encryption.Encrypted is added in the third step. In the fourth step, both labels

are forwarded to the store data vertex and the label propagation terminates. After the

label propagation, data �ow constraints can compare node and data labels on each vertex

without having to iterate over other vertices. The resulting con�dentiality analysis is

scalable and has been evaluated on large DFDs with thousands of vertices [231].

� Finding: Label propagation in Transpose Flow Graphs (TFGs) represents a

simple and scalable way to automate data �ow analysis regarding con�dentiality.

7.3. Representing Uncertainty in Data Flow Analysis

The data �ow analysis framework [36] presented in the previous section provides us with

means for scalable con�dentiality analysis and also with the notion of TFGs to reason

about data �ows. The following discussion is based on this notion, and the di�erentiation

between black-box and white-box analysis [111, 253], presented in Section 7.2. We show

di�erent approaches to represent uncertainty in data �ow analysis [101]. These approaches

di�er in the use of data structures to analyze uncertainty and also in the use of information

available for the analysis. This addresses Problem P1.

We addressed the representation of uncertainty in DFD, in Section 5.5, and in architectural

models, in Section 6.2. The former presented the distinction between primary and secondary
uncertainty in DAGs, the latter related the �ve uncertainty types to elements of the uni�ed

modeling primitives [235] and to the PCM. We build on this to explain the representation

125

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

Domain Information categories

Con�dentiality 1. Con�dentiality violation occurrence, 2. Violated con�dentiality

requirements, 3. Location within the model, 4. Analyzed data �ows,

5. State of data at the violation

Uncertainty 6. Uncertainty source, 7. Uncertainty properties and classi�cation,

8. Uncertainty impact within the model, 9. Uncertainty interactions,

10. Uncertainty mitigation

Table 7.1.: Available information categories for uncertainty-aware con�dentiality analysis.

of uncertainty in architecture-based data �ow analysis. As discussed previously, there are

multiple approaches to data �ow analysis under uncertainty which show di�erent levels

of uncertainty-awareness. In the following, we discuss which information can be used for

such analyses and present �ve levels of data �ow analysis under uncertainty.

7.3.1. Available Information in Uncertainty-Aware Data Flow Analysis

Table 7.1 shows information categories regarding con�dentiality and uncertainty. The con-

�dentiality information categories are derived from data �ow-based analyses of architec-

tural models [235]. The categories include knowledge about the existence of con�dentiality

violations (1.) and the related violated requirements (2.). We consider this to be the result

of any usable analysis. In the running example, the con�dentiality requirements of storing

personal data could be violated. Additionally, such analyses can point to the location

within the architectural model (3.) and the critical data �ow (4.) where the violation

occurred. In the running example, the violating data �ow could be from the Customer
to the Database Service, where the violation happens. Last, the state of the data causing

the violation can be considered (5.). This can be realized using labels like personal data,

or deployment in the cloud. The data �ow analysis framework presented in Section 7.2

uses all �ve categories in the analysis and also when presenting identi�ed con�dentiality

violations. Nevertheless, analyses with a simpli�ed interface are imaginable, e.g., black-box

analyses only report the existence of violations.

The uncertainty information categories are derived from the uncertainty management in

Self-Adaptive Systems (SASs) [115] and Cyber-Physical Systems (CPSs) [2] and also based

on the handling of uncertainty regarding con�dentiality [104]. By investigating an uncer-

tainty source (6.) in the model or its environment [2], it can be described more precisely,

e.g., based on a classi�cation (7.), as discussed in Chapter 5. Also, the uncertainty’s impact

(8.) on the software architecture can be derived and expressed. We discussed the distinc-

tion between uncertainty sources and their impact in Section 5.2. In a software system

with multiple uncertainty sources, potential uncertainty interactions are also important to

consider (9.). This is related to the Uncertainty Interaction Problem (UIP) and has been

discussed with regard to DFDs in Section 5.5. Last, by analyzing the architectural model,

mitigation techniques (10.) can be chosen already at design time [115]. In our running

126

7.3. Representing Uncertainty in Data Flow Analysis

example, we identi�ed four uncertainty sources (U1 – U4), which were also classi�ed. We

analyzed the potential impact of these uncertainties using uncertainty impact analysis in

Chapter 6. For instance, uncertainty U4 causes a broad impact in the Database Service.
We also have means to represent simple uncertainty interactions, e.g., between secondary

and primary uncertainty sources in DAGs, see Section 5.5. For example, we identi�ed

an uncertainty interaction between the deployment in Uncertainty U3 and the provider

trustworthiness in Uncertainty U4. Last, design time approaches can also support the

tool-supported mitigation uncertainty that causes con�dentiality violations. We consider

this to be out of scope for this work as we focus on the uncertainty-aware analysis as a

required prerequisite for mitigation [272].

7.3.2. Levels of Uncertainty-Awareness in Data Flow Analysis

Based on these information categories (1. – 10.), we de�ne �ve levels (L0 – L4) of data

�ow analyses under uncertainty. Regarding model-based con�dentiality analysis, showing

violations (1.) with the related reason (2.) to software architects is considered to be the

minimum viable information [105]. The analysis results become more expressive by also

showing the location (3.), analyzed data �ows (4.) and the state of the data (5.).

L0: No uncertainty-awareness Data �ow analyses that provide neither modeling nor

analysis support for uncertainty show no uncertainty-awareness. This a�ects the precision

and comprehensiveness [97] of con�dentiality violations as the models and the analysis

fall short of representing the real world, as discussed in the introduction of this chapter.

The lack of awareness becomes visible in over-estimations and also in missing violations

[233]. In our running example, a con�dentiality analysis that ignores uncertainty would

miss all violations due to the identi�ed uncertainty sources. This level represents the state

of the art before our endeavors [99, 233, 236]. Note that this does not mean that such

analyses cannot be extended to consider uncertainty [99].

L1: Naive approach to uncertainty-awareness The naive approach to handling uncer-

tainty is to directly model its impacts (8.). This means manually altering models to respect

the change caused by uncertainty. In our running example, we can model di�erent variants,

e.g., with the deployment on-premise or in the cloud. The analysis rejects the software

architecture if there exist con�dentiality violations in at least one variant. By directly

representing the uncertain e�ect within the model, we lose all information about the

source (6. and 7.). Especially when considering multiple uncertainty impacts, all variant

combinations and interactions (9.) have to be manually modeled, which requires extensive

manual e�ort. Additionally, changes to the model have to be done in all variants. While

this yields more comprehensive results, it still highly lacks precision [29] and requires an

unreasonably high manual e�ort.

127

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

L2: Scenario-awareness Scenario-aware analyses build on the idea of representing un-

certainty sources (6.) as model variations separate from the modeled software architecture.

Here, variability models, model variations, or partial models represent common ways of

expressing the potential outcomes of uncertainty [255]. We also included this level of

information in our classi�cation (7.). The option Scenario Uncertainty in the category Type
expresses a state of knowledge where the e�ects of an uncertainty source can be described

using scenarios. As classi�ed in Section 5.4, all uncertainty sources are describable using

scenarios in our running example. The main di�erence to the naive approach (L1) is the

automated application of these variations to the architectural model. This approach greatly

reduces the manual modeling e�ort, as software architects only have to specify the point of

variation and do not realize the variation and thus the impact of the uncertainty (8.) itself.

The analysis rejects only such architecture variants that violate con�dentiality, without

considering the location (3.), data �ows (4.) or the state of the data (5.). Realized as a

black-box analysis extension, this lacks precision because it only considers the existence

of violations (1.) of requirements (2.) in selected scenarios. Last, while the manual e�ort

is reduced, the complexity of calculating variations of variations can quickly lead to a

combinatorial explosion, as discussed in the context of design space exploration [143].

L3: Graph-awareness To overcome the limitations regarding scalability and expressive-

ness of the results, graph-aware analyses can be used. Realized as white-box extension

[29, 35, 37, 102] of a data �ow analysis, this enables the connection of uncertainty sources

(6.) to analyzed data �ows (4.). This is the �rst level that is able to represent uncertainty

as a �rst-class concern, both within the architectural model and DFDs. It builds on the

idea of representing uncertainty as a set of scenarios, introduced with the scenario-aware
approach (L2). However, by relating the variation directly to the analyzed data �ows, a

higher expressiveness can be reached. Graph-aware analyses thus cover all �ve con�den-

tiality related categories (1. – 5.) and are able to represent Uncertainty sources (6.), their

properties (7.), and their impact (8.) directly within the model. Additionally, they can

achieve higher scalability as uncertainty sources in di�erent data �ows can be analyzed

independently, which partially addresses the combinatorial explosion. Put simply, in a

real-world software system with many independent data �ows, the e�ects of uncertainties

can be separate. To leverage this, the analysis requires awareness about the analyzed graph,

which represents the main di�erence to the scenario-aware approach (L2). In our running

example, the scenario-aware approach can only try out all variations, while the graph-aware
approach can use the information of the di�erent data �ows from the Customer. However,

this does not lead to more accurate results—both approaches di�er in expressiveness and

scalability. Note that we renamed “data �ow-awareness” to “graph-awareness” compared

to the original publication [101] to increase clarity
1
.

1
Like an uncertainty-aware uncertainty analysis, a data �ow-aware data �ow analysis does not make too

much sense. However, I am not so sure about the former—what about antifragility?

128

7.3. Representing Uncertainty in Data Flow Analysis

L4: Impact-awareness The graph-aware analysis (L3) is able to consider the e�ect of

single uncertainty sources, both within the architectural model and DFDs. However, the

impact of uncertainties can also a�ect other uncertainties, i.e., uncertainty interaction.

This becomes visible in uncertainty-aware data �ow analysis when an uncertainty alters

a data �ow that contains another uncertainty. In our running example, such an interac-

tion happens with Uncertainty U3 about the deployment and Uncertainty U4 about the

provider’s trustworthiness. The former can impact the data �ow so that it does not �ow

to a location that is a�ected by the latter, as shown in Figure 5.2. By understanding such

interactions and the transitive e�ects of propagating uncertainty, and by incrementally

analyzing data �ows, impact-awareness can be reached. This level builds on the �ndings

of scenario-aware (L2) and graph-aware (L3) approaches and thus yields analysis results

with the same accuracy regarding con�dentiality violations. However, by also considering

uncertainty interactions (9.), a higher expressiveness and scalability can be reached.

These �ve levels (L0 – L4) of uncertainty-aware data �ow analysis provide the terminology

to present the di�erent research approaches hereafter. Although the terminology is related

to orders of ignorance [11] or the levels of uncertainty [41], there exists no direct mapping,

as we only focus on already identi�ed uncertainty sources, see Chapter 5. Note that these

levels do not represent a comprehensive list but only a classi�cation for the scope of this

work. Further classes are imaginable, e.g., regarding the mitigation (10.), or by using

advanced algorithms for analyzing uncertainty impacts and con�dentiality violations.

Other classi�cations of uncertainty-aware data �ow analyses are useful in addition to

these levels. Regarding the wide variety of uncertainty sources, some analyses might

not cover all types of uncertainty [184, 255]. Troya et al. [255] conduced a Systematic

Literature Review (SLR) with 123 papers and found that the majority of approaches only

consider less than three types of uncertainty, e.g., behavior uncertainty combined with

design uncertainty or belief uncertainty combined with measurement uncertainty. Here,

we build on the �ve uncertainty types of the category Architectural Element Type of our

classi�cation, introduced in Section 5.3. We call an uncertainty-aware data �ow analysis to

be type-speci�c if it supports a subset of these uncertainty types. Uncertainty type-agnostic
approaches support all �ve uncertainty types.

� Finding: Uncertainty-aware data �ow analysis approaches can be classi�ed

depending on the supported uncertainty types and the utilization of available

information within the analysis. This enables the classi�cation of approaches that

di�er in accuracy, expressiveness, and scalability.

7.3.3. Examples for Uncertainty-Aware Data Flow Analysis

We illustrate the di�erent levels (L0 – L4) and types of uncertainty-aware analysis using

our running example. As discussed previously, all four uncertainty sources (U1 – U4)

represent Scenario uncertainty. Based on the �ndings of Troya et al. [255], we can thus

describe the variation scenarios of all four uncertainty sources. Table 7.2 shows the possible

scenarios for each uncertainty source that has been introduced in Chapter 3.

129

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

Uncertainty source Uncertainty scenarios

U1 User input Valid input / Erroneous input / Malicious input

U2 Data processing None / Encryption / Validation / Both

U3 Component deployment On premise / Cloud service

U4 Provider trustworthiness Trustworthy / Suspicious

Table 7.2.: Uncertainty scenarios of all uncertainty sources of the running example.

A data �ow analysis that lacks uncertainty-awareness (L0) is not able to consider these

uncertainty sources. Speaking in terms of variations, these analyses select one scenario of

each uncertainty, i.e., the architectural model without modi�cation. Only if this default

scenario violates con�dentiality, the violation is identi�ed. The naive approach (L1) to

uncertainty-aware analysis is to manually model all combinations of all scenarios. As

this approach must assume the dependence of all uncertainty sources and their scenarios,

we use the Cartesian product [76]. Thus, software architects have to manually model

3 · 4 · 2 · 2 = 48 software architectures in the running example, which is not feasible.

Using variation models in scenario-aware analysis (L2), software architects only model the

variation points, i.e., all 3 + 4 + 2 + 2 = 11 scenarios of the running example. The variation

creation can be automatized [265], which reduces the manual modeling e�ort, i.e., 11 < 48.

However, the assumption on the dependence of all uncertainty sources remains and thus,

all resulting 48 variants have to be analyzed. With larger amounts of uncertainty sources or

scenarios, this can quickly lead to the already discussed combinatorial explosion [143].

The graph-aware approach (L3) addresses this issue. As discussed with uncertainty propa-

gation in DFD in Section 6.4, uncertainty sources can be considered independently in all

independent data �ows. This reduces the number of variants that have to be analyzed in

all non-trivial software systems, i.e., in software systems with more than a single data �ow.

Our running example comprises three independent data �ows: Retrieving the support

contact, querying items, and making purchases, see Figure 3.2. Using the DFD as a data

structure for the analysis, the graph-aware approach yields more comprehensive results.

In our running example, we can see that the data �ow representing the support contact

retrieval is neither a�ected by uncertainty nor violates con�dentiality.

Last, the impact-aware approach (L4) builds on this and also considers uncertainty interac-

tions. We discussed this with the interaction of the uncertainties U3 and U4 in Section 5.5.

Note that we do not classify the uncertainty impact analysis presented in Chapter 6 as it

does not represent a con�dentiality analysis. However, this analysis could be considered

as type-agnostic and graph-aware, as all �ve uncertainty types can be propagated on the

DFD. This analysis does not reach impact-awareness because the e�ect of changes to the

software architecture is ignored and overestimated.

In the remainder of this chapter, we present four approaches to uncertainty-aware data

�ow analysis. Table 7.3 classi�es these approaches according to the �ve levels (L0 – L4)

and with regard to the type speci�city. We also add the uncertainty-unaware approach of

architecture-based data �ow analysis for reference purposes.

130

7.4. Uncertainty Type-Speci�c Data Flow Analysis

Level of awareness Uncertainty type-speci�c Uncertainty type-agnostic

L0 None Uncertainty-unaware data �ow analysis [36, 233, 236]

L1 Naive - -

L2 Scenario-aware Approach for structural uncer-

tainty, Subsection 7.4.1

-

L3 Graph-aware Approach for environmental

uncertainty, Subsection 7.4.2

Approach for tracing uncer-

tainty, Subsection 7.5.1

L4 Impact-aware - Approach for impact-aware

analysis, Subsection 7.5.2

Table 7.3.: Awareness levels and type speci�city of uncertainty-aware data �ow analysis approaches.

The data �ow analysis framework [36] without explicit support for modeling or analyzing

uncertainty as presented in Section 7.2 represents Level L0. We do not distinguish between

the type speci�city as the analysis does support no uncertainty at all. We also do not present

naive approaches (L1) in this thesis, as they do not represent a noteworthy improvement

on the state of the art. The �rst approach discussed in this thesis is the scenario-aware
analysis (L2) of structural uncertainty, e.g., regarding uncertain component deployment.

Due to the previously discussed limitations of scenario awareness, we continue with an

approach for environmental uncertainty that is graph-aware (L3). Afterward, we present

the �rst uncertainty type-agnostic approach for data �ow analysis. This approach covers

all �ve uncertainty types and traces con�dentiality violations to variations caused by

uncertainty sources. Last, we further enhance this concept and present an uncertainty

impact-aware approach (L4) for data �ow analysis regarding con�dentiality. Generally

speaking, a higher level and being type-agnostic is superior.

7.4. Uncertainty Type-Specific Data Flow Analysis

In this section, we present the �rst two approaches for uncertainty-aware data �ow

analysis. The �rst approach is scenario-aware (L2) and considers structural uncertainty

within the software architecture. The second approach is graph-aware (L3) and deals with

environmental uncertainty concerning user privileges in access control. Both approaches

are type-speci�c as they are tailored to one uncertainty type. This addresses Problem P2.

7.4.1. Data Flow Analysis Under Structural Uncertainty

As the name suggests, structural uncertainty a�ects the structure of the software architec-

ture. Examples are Architectural Design Decisions (ADDs) regarding components or their

deployment. As this represents uncertainty in the software design [167], it is best repre-

sented using variation points [255]. Regarding the variation creation, there already exist

approaches such as design space exploration [243]. For this analysis approach, we use the

131

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

architectural optimization approach PerOpteryx [143, 144, 145, 163] and combine it with

data �ow analysis [236]. Software architects �rst model di�erent design decisions. These

design decisions are then used to automatically create di�erent architecture variations,

which are analyzed for con�dentiality. Since we reuse PerOpteryx for the design space

exploration, this approach can consider additional quality attributes, such as performance,

or costs, and calculate the Pareto optimal candidate. This optimization enables software

architects to make informed trade-o� decisions between quality metrics.

PerOpteryx [143, 144] is a design space exploration and optimization approach for the

PCM. It uses evolutionary search algorithms and calculates the Pareto optimal archi-

tectural variation. The di�erent variation points of the architecture are speci�ed in the

design decision model. Here, software architects can de�ne which entities in the software

architecture can be con�gured. For instance, in our running example, a design decision

is the deployment of the Database Service component to the On Premise Server or to the

Cloud Service. Due to the relation of ADDs and uncertainty, explained in Section 5.2, we

can use this model to express structural uncertainty sources and their scenarios. The

di�erent quality attributes are de�ned as quality dimensions. Each generated architectural

variation that is evaluated for quality attributes is called a candidate. Besides the optimal

candidates, PerOpteryx also yields all the investigated candidates. There exist various

quality dimensions, such as costs or performance. However, there is no quality dimension

for con�dentiality, which is required for the connection to the data �ow analysis. While

PerOpteryx already contains a security dimension [45], we decide against it since we want

to explicitly target con�dentiality. The existing security dimension is focused more on the

costs of introducing security measures and the costs of failure.

We add a new con�dentiality violation to PerOpteryx that is modeled as real values where

decreasing values are better solutions [155]. We map these to a binary classi�cation

for the con�dentiality analysis results. For each quality dimension, PerOpteryx de�nes

handlers, which can analyze a model for the given quality dimension. Therefore, we

de�ne a new con�dentiality handler for the con�dentiality domain, which acts as an

adapter between PerOpteryx and the data �ow analysis. This handler forwards the current

architecture candidate models to the data �ow analysis and interprets the analysis result.

The interpretation of con�dentiality violations is binary with the classes con�dentiality
ensured and con�dentiality violated. Our adapter transforms con�dentiality ensured to -1

and con�dentiality violated to 1. This binary interpretation is required as there is currently

no meaningful way of further quantifying the results of the data �ow analysis [266]. The

results enable the PerOpteryx optimization to rank con�dential candidates higher than

non-con�dential ones. After the execution of PerOpteryx, software architects get a result

with all tested variations and the Pareto optimal version. Figure 7.5 shows this procedure

of PerOpteryx [144] using the data �ow analysis. For the sake of simplicity, we only

depict a single quality dimension, i.e., con�dentiality. Other quality dimensions can be

represented by additional swimlanes that are called during the candidate evaluation.

In our running example, only Uncertainty U3 about the deployment represents structural

uncertainty. This uncertainty can be modeled as ADD in the design decision model.

PerOpteryx then creates all variations, i.e., the deployment on the On Premise Server and

132

7.4. Uncertainty Type-Speci�c Data Flow Analysis

PerOpteryx

Instantiate search
problem, generate
initial candidate

Evaluate each
candidate

Choose candidates
for next generation

Generate new
candidates

Data Flow Analyis

Execute data flow
analysis

Receive candiate
architectural model

Interpret analysis
results

Figure 7.5.: Activity diagram showing the interplay of PerOpteryx and the data �ow analysis using swimlanes.

on the Cloud Service. Both candidates are forwarded to the data �ow analysis. The former

ensures con�dentiality while the latter causes a con�dentiality violation and thus returns

the value 1. Last, the deployment on premise is returned as the optimal version.

There are three disadvantages and two advantages of this approach. First, being type-

speci�c to structural uncertainty limits the applicability to other uncertainty types that

can a�ect con�dentiality. Second, the black-box coupling of PerOpteryx with the data �ow

analysis only shows the existence of violations but no further information, e.g., on the

location, or a�ected data �ows, which impedes the interpretation by software architects.

Third, con�dentiality violations have no continuous occurrence, i.e., small changes to the

software architecture can have a large impact. This is a known limitation of PerOpteryx

and is described as a rugged search landscape with non-continuous jumps [143]. In the

worst case, this can cause PerOpteryx to test out all possible variations, i.e., the Cartesian

product, which resembles a brute-force approach. Nevertheless, this coupling is superior to

the naive approach (L1) as it notably reduces the modeling e�ort. Additionally, combining

con�dentiality analysis with the optimization of other quality attributes represents a more

realistic application scenario, where informed trade-o� decisions are made by software

133

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

Algorithm 7.3 Algorithm for scenario-aware data �ow analysis under uncertainty

1: procedure analyzeScenarioAware(model, constraint, uncertainties)
2: violations← ∅
3: variations← generateAllVariations(model, uncertainties)
4: for variation ∈ variations do ⊲ Analyze all possible variations

5: violations← violations ∪ analyze(variation, constraint)
6: end for

7: return violations
8: end procedure

architects. No other approach presented in this thesis provides such functionality without

requiring the combination with other architecture evaluation approaches [243].

� Finding: On the one hand, the black-box coupling of data �ow analysis with

architectural optimization is complicated by the non-continuous occurrence of

con�dentiality violations, which increases the complexity of the optimization

problem. On the other hand, extending an existing software architecture optimiza-

tion approach simpli�es the joint evaluation of multiple quality attributes.

To conclude, we present a more general approach to scenario-aware data �ow analysis under

uncertainty. Put simply, scenario-awareness (L2) is generating all possible variations of the

architectural model and then analyzing them to identify con�dentiality violations [265].

This is shown in Algorithm 7.3. However, such analyses are prone to the combinatorial

explosion of uncertainty sources and their scenarios. Additionally, the analysis results

are hard to interpret without further processing. For instance, in our running example,

software architects would have to interpret the con�dentiality violations of 48 architectural

models to asses four uncertainty sources. We posit that scenario-aware analysis should

only be used in speci�c cases, e.g., combined with design space exploration.

7.4.2. Data Flow Analysis Under Environmental Uncertainty

Environmental uncertainty arises from the system context, e.g., in the system usage, or its

resource environment. Here, sensors are especially often referred to as uncertainty source

[49, 50, 51, 195, 272]. Examples are sensor failure, sensor noise, or sensor inaccuracy [103].

We discussed the relation of such uncertainty and con�dentiality in Chapter 5, where we

classi�ed such uncertainty as environment or input uncertainty. A particular challenge

is the relation of environmental uncertainty and access control [41, 113]. Broken access

control can lead to severe con�dentiality violations and is listed as the TOP 1 entry in the

OWASP Top 10 [192]. To address this, we present our second approach to uncertainty-

aware data �ow analysis: A graph-aware analysis (L3) of environmental uncertainty. The

following description is based on our publication about this approach [37].

134

7.4. Uncertainty Type-Speci�c Data Flow Analysis

A common measure to ensure con�dentiality are access control mechanisms that authorize

access or processing of data. Depending on the underlying access control model, various

sources of information are used to determine whether access is granted. Services use

di�erent sources, e.g., sensors, to acquire information. Services process the information

and provide a resulting access control attribute, e.g., a role or a location, that can be used by

the access control system. However, these services introduce a degree of uncertainty to the

access control system. This uncertainty results from in�uencing factors of the environment

when acquiring the information. The in�uence of the factors on the access control system

can result in reduced validity of statements about con�dentiality. Depending on the system

design, software architects or security experts might already be able to identify potential

in�uencing factors. For example, the ability of a GPS service to provide an accurate position

is highly dependent on its surroundings, like buildings.

We extend our running example presented in Chapter 3 to illustrate this challenge. We

add an Admin user who can directly access the Database Service for maintenance [264]. To

enhance security, access to the database is only permitted if the accessing actor is located

inside of the o�ce. The location of each actor is monitored using a GPS location service.

Here, we can choose a high-sensitivity GPS sensor, short HSGPS, or the normal GPS sensor

in the actor’s mobile phone. For this example, we focus on the di�erences between running

the two types of GPS sensors indoors [138], where the sensor quality can degrade. Once

the actor enters the building, the signal attenuation increases which results in a reduced

signal-to-noise ratio. A reduced signal-to-noise ratio increases the time needed to acquire

satellite data and calculate a position, and the amount of positioning errors [138]. While

the HSGPS sensors are powerful enough to provide accurate positioning, the accuracy of

the embedded GPS sensor of the mobile phone su�ers when used inside, which leads to

uncertainty regarding the actual position. This reduced accuracy introduces uncertainty

about the position [51]. When this information is used within access control, it could lead

to the wrong classi�cation of the Admin or other actors in the building.

To address such uncertainty, we present an approach for handling known, environmental

uncertainty in access control during design time. To this end, we enable the explicit

representation of the known uncertainty and integrate the additional knowledge into an

analysis. We propose a notion of con�dence in the validity of access control attributes,

based on three types of in�uencing factors of the system environment. We then show an

access control analysis that integrates con�dence into our data �ow analysis framework,

presented in Section 7.2. We propose the use of Fuzzy Inference Systems (FISs) [140] to

combine in�uencing factors to a resulting con�dence value.

Hu et al. [117] provide a de�nition and considerations regarding Attribute-Based Access

Control (ABAC). They describe a trust chain, concerning the attributes used to make access

control decisions. Trust chains help determine the ownership of information and services,

as well as requirements for technical solutions to establish valid trust relationships. The

predicate of a trust relationship revolves around the idea that the access control system

can trust the validity or correctness of the information, supplied by the owner, e.g., an

authorization service. Depending on the access control model, many trust relationships

are required to achieve a properly working access control system. Figure 7.6 shows a

135

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

Access Control
Decision

Subject
Aributes

Object
Aributes

Location
Service

Location Source
(GPS)

Authentication

Server
failure rate

Environment

Nature Factors

Figure 7.6.: A simpli�ed trust chain that incorporates types of factors of the GPS location example.

trust chain of a location attribute. The subject attributes have a trust relationship with

the location service, which in turn has a trust relationship with the location source. As

indicated by the additional arrows, the trust relationships are impacted by in�uences of

the environment of the system.

Ardagna et al. [10] de�ne a con�dence value that combines the service used for location

determination and environmental conditions. Similar to the trust of Hu et al. [117],

con�dence describes the certainty that a location is valid, which is dependent on the

environment. Based on the work of Hengartner and Zhong [114] we can identify three

environmental factors that in�uence the uncertainty in access control. These factors can

be applied to access control attributes, align well with the idea of trust relationships of Hu

et al. [117] and can be represented in software architecture. We describe the three factors

in the following.

First, the source that is used by the service to obtain information that is needed for the

access control attribute. Location information, for example, might be derived from a

physical access control mechanism or GPS data. Each of these sources has a di�erent

margin of error or accuracy. Second, nature factors that either in�uence the source’s or the

service’s ability to return correct information or attributes. Depending on the sensitivity

and rating, the accuracy with which GPS sensors can determine a location is heavily

in�uenced by the physical environment, e.g., surrounding buildings [138], and weather

conditions, e.g. cloudy sky [10]. Third, the age of an attribute, which, depending on the

underlying information, might degrade validity. Depending on the attribute, age can be

a combination of the time it took to gather the information from the source, the time it

takes to process the information to an access control attribute and the overall time that

has passed since this access control attribute has been created.

These factors and the associated uncertainties are all known, but especially when multiple

factors need to be combined, their in�uence on the validity of an access control attribute

is hard to describe. To provide a way of representing this known uncertainty, we de�ne

a notion of con�dence in the validity of access control attributes. Con�dence combines

the known uncertainty of environmental factors into a single value, which represents the

level of con�dence that a corresponding attribute is valid. Con�dence and the known

uncertainty are not directly associated with an access control attribute, but rather with the

service that is used by the system to derive the attribute. A service uses a source to receive

136

7.4. Uncertainty Type-Speci�c Data Flow Analysis

FuzzyInferenceSystem

Rule

FuzzFuzzificationFunction

MembershipFunction

FuzzDefuzzificationFunction

FuzzFuzzyFunctionrules

1..*

inputs 1..*

output 1

term

1..*

inputs
1..*

output
1

Figure 7.7.: Excerpt from the class diagram of the Fuzzy Inference System (FIS) meta model.

information. The service processes this information into an attribute and provides it to

the access control system. The factors decrease the overall accuracy and thereby in�uence

con�dence. Any of the factors shown in Figure 7.6 might reduce con�dence in the location

attribute. For instance, this can result in high con�dence in access control attributes, that

are derived by services that use the HSGPS sensors, and low con�dence in access control

attributes derived by services using the mobile phone GPS sensor.

To combine these factors, we propose the use of fuzzy inference in the form of a FISs [140].

For over two decades, fuzzy sets and fuzzy logic have been used to describe uncertainty

[140]. Fuzzy logic is also used in related work regarding design time uncertainty and

uncertainty in access control [56, 70, 116, 255]. A FIS is made up of four main components

[140]: A fuzzi�er �rst translates the crisp values of environmental factors into fuzzy values,

by applying them to a set of membership functions. The fuzzy inference engine uses the

fuzzy input from the fuzzi�er and rules to infer a fuzzy output. The defuzzi�er translates

the fuzzy output of the inference engine to a con�dence value, by aggregating the fuzzy

outputs. These steps are supported by a shared knowledge base.

We present a FIS metamodel as a way to enable software architects to create FISs. Figure 7.7

shows an excerpt of the class diagram representation of the FIS metamodel. We represent

the environmental factors as fuzzi�cation functions, which are made up of membership
functions. Each membership function de�nes a fuzzy set and represents a linguistic value
the environmental factor can take on. The corresponding membership functions de�ne

a degree of membership to the fuzzy set within an interval of [0, 1]. Using the value of

the environmental factor, e.g. a 30% signal-to-noise ratio, the fuzzi�er calculates a degree

of membership for each fuzzy set of the associated fuzzi�cation function. In our running

example, the signal-to-noise ratio can take on the linguistic values of low and high. The

linguistic values of age are new and old. As an example, the environmental factor values

of a 30% signal-to-noise ratio would result in the membership degree of 0 for high and 0.5

for low. 3 minutes of age would result in the membership degree of 0 for new and 1 for old.

Rules to combine the environmental factors are de�ned by combining a linguistic value of

each environmental factor and de�ning a result. A rule that combines the most negative

linguistic values of signal-to-noise ratio and age and consequently results in low con�dence

is de�ned like this: IF signal-to-noise ratio is ’low’ AND age is ’old’ THEN con�dence is ’low’.

137

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

query data

return data

store data

Database

return data Admin

return data Admin

return data ird-party

Inside

Outside

Inside

high

low

low

Figure 7.8.: Data Flow Diagram (DFD) of the extended running example with additional actors and their

node labels. Con�dentiality violations are marked with lightning bolts.

Depending on how the FIS is set up, the membership degrees of the linguistic values of a

rule are combined. The result of the rule with the highest combined membership degrees

is returned. Similar to how membership functions are used in the GuideArch approach

[70], a software architect can initially de�ne the environmental factor value as a fuzzy set.

In subsequent stages of development, when more information becomes available, these

ranges can be narrowed down or �xed to a value. For our running example, this could be

done by measuring the signal-to-noise ratio in the actual physical environment.

Using FISs in the process has several bene�ts. Klir and Yuan [140] describe that through

fuzzi�cation an enhanced ability to model real-world problems is gained, lowering overall

solution cost. The use of fuzziness also serves to better capture human common-sense

reasoning and decision-making [140]. When setting up a calculation rule in general, the

system’s properties and environment are abstracted and simpli�ed. As a result, information

about the inputs and their in�uence on the result is lost. A FIS conserves more knowledge

about the inputs and their in�uence on the calculated con�dence value than a conventional

mathematical function by mapping inputs to membership functions and working with

natural language concepts. Additionally, a FIS is capable of capturing the meanings of

sentences in natural language [140], which enables, e.g., a software architect or security

expert to easily map statements or requirements about the in�uence of environmental

factors on con�dence to calculation rules.

We extend the data �ow analysis presented in Section 7.2 to consider the so-calculated

con�dence values. Here, we build on the representation of all con�dentiality-related

characteristics as data labels and node labels. As con�dence is directly related to such

attributes, we extend these characteristics by adding con�dence labels. Figure 7.8 shows a

DFD of the extension of our running example with simpli�ed data �ows to the actors. The

original data �ows from the Customer on the left are marked gray. We add the node labels

of the Admin actors a third-party actors with their corresponding con�dence labels low
and heigh. As discussed previously, these con�dence labels originate from the FIS based

on the input variables from the HSGPS or GPS sensors. The con�dentiality requirement is

de�ned as a data �ow constraint that only allows data to �ow to actors within the building

with high con�dence. Thus, the upper data �ow is permitted as the Admin is inside the

138

7.4. Uncertainty Type-Speci�c Data Flow Analysis

building with high con�dence. The other data �ows show con�dentiality violations, as the

Admin is either outside the building, or a Third-Party is considered to be inside the building

with only low con�dence. Without considering the con�dence, the bottom con�dentiality

violation regarding the Third-Party would be missed.

We include all calculated con�dence labels in all node and data labels and also in the

formulation of data �ow constraints. Although this represents a white-box extension of

the data �ow analysis, we do not alter the label propagation algorithm, only the textual

representation of labels [37]. Thus, the calculation of the FIS can be interpreted as a

preprocessing step before the data �ow analysis. According to our classi�cation, this

represents a graph-aware data �ow analysis (L3) under uncertainty. The analysis result

contains all information from the data �ow analysis, e.g., violation location, violated data

�ows, and the mismatching labels that cause the violation, including information about

the calculated con�dence. Due to the application of FISs, information about both the

environmental uncertainty sources and their impact is represented within the model and

the analysis, as discussed previously. Last, uncertainty can be analyzed independently on

distinct data �ows, which minimizes the analysis complexity. For more information on

the realization, please consult our publication [37], or the data set [98].

To conclude this section, we compare and discuss both approaches of uncertainty type-

speci�c data �ow analysis. Both approaches employ already known techniques for repre-

senting and handling uncertainty [243, 255], i.e., design space exploration [143, 144] or

fuzzy inference [140]. Both approaches combine these techniques with data �ow analysis,

either in a black-box manner as in the �rst approach, or a white-box manner in the second

approach. This results in the �rst approach for structural uncertainty being scenario-aware
and the second approach for environmental uncertainty being graph-aware.

Both approaches are type-speci�c and employ techniques that are suited for representing

their targeted uncertainty type, i.e., design space exploration for structural uncertainty

[243, 255], and fuzzy inference for environmental uncertainty [56, 70, 116]. Despite their

di�erences in supported uncertainty types and realization, they show the commonality of

considering uncertainty in form of scenarios. The design decision model of PerOpteryx

enables software architects to describe design alternatives, i.e., di�erent scenarios of a

software architecture. The application of FISs enables software architects to calculate

distinct classes of a con�dence value, e.g., low or high, i.e., di�erent scenarios describing

the attributes in access control decisions. The suitability of scenarios or variation [265]

to represent uncertainty has simultaneously been found by Troya et al. [255]. However,

besides being type-speci�c, both approaches also share the shortcoming of requiring expert

knowledge. Software architects or security experts have to instantiate the FIS meta model

with accurate values or have to specify design decision models. In the following, we build

on these �ndings to de�ne uncertainty type-agnostic data �ow analysis.

� Finding: Data �ow analysis can be extended by techniques like design space

exploration or fuzzy inference to consider uncertainty within the analysis. Here,

decomposing uncertainty sources into their scenarios is expedient.

139

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

7.5. Uncertainty Type-Agnostic Data Flow Analysis

In this section, we present the second two approaches for uncertainty-aware data �ow

analysis. The �rst approach is graph-aware (L3) and the second approach is impact-aware
(L4), which represents the highest awareness level, see Section 7.3. Both approaches are

type-agnostic, i.e., support all �ve uncertainty types introduced in Section 5.3. We also

present r Abunai, which is tooling to support the modeling and analysis of the impact-
aware approach. This addresses Problem P3 about type-agnostic data �ow analysis.

7.5.1. Tracing Uncertainty in Data Flow Analysis

Incorporating information about independent data �ows—called TFGs in our terminology

introduced in Section 7.2—enables the de�nition of graph-aware analysis (L3). We present

an analysis that traces con�dentiality violations back to the originating uncertainty sources

using this information. This enables relating violations to concrete scenarios and simpli�es

the interpretation and mitigation by software architects.

In this approach, we use variation models [168, 265] to express uncertainty sources and

their scenarios. Variation models are similar to the already discussed design decision

models presented in Section 7.4. Software architects specify target elements and alternative

elements of the software architecture. This can be applied, for instance, to deployment

locations, or to actions in Service E�ect Speci�cations (SEFFs). As discussed previously,

design uncertainty is “normally represented in software models by variability models” [255].

Model variation can be used to describe possible outcomes of Scenario Uncertainty. Each

uncertainty is represented by a variation point and a selection of alternative architectural

elements. This description results in a variation model [168] of the software architecture.

Table 7.2 shows all scenarios of all uncertainties of the running example.

Based on the variation model, architectural variants can be generated by permutation [168].

If the information about data �ows were ignored, this would cause the same complexity as

a scenario-aware analysis (L2). As discussed in Section 7.3, our running example requires

48 variations. However, not all uncertainties a�ect all TFGs. Thus, the relevant variations

can be �ltered in graph-aware analysis (L3). The resulting variants are then analyzed by

the data �ow analysis presented in Section 7.2. By relating the resulting con�dentiality

violations to the analyzed variation and its uncertainty, software architects can focus on

critical variants, i.e., variants that violate con�dentiality. The hereby de�ned analysis

traces violations back to their originating uncertainties [29].

Table 7.4 shows the three TFGs in the running example and the uncertainty sources that

can be found in these TFGs. This table can be derived based on Figure 3.2 showing the DFD

of the running example and Table 7.2 showing the scenarios of all uncertainty sources.

The �rst TFG representing the support contact request is not a�ected by uncertainty. The

second TFG is only a�ected by the deployment (U3) and the provider trustworthiness

(U4). The third TFG is additionally a�ected by the user input (U1) and the data processing

(U2), i.e., by all uncertainties in the running example.

140

7.5. Uncertainty Type-Agnostic Data Flow Analysis

TFG name Relevant uncertainty sources

1 Request support contact -

2 View available items U3, U4
3 Purchase items U1, U2, U3, U4

Table 7.4.: Relation of Transpose Flow Graphs (TFGs) and uncertainty sources in the running example.

Algorithm 7.4 Algorithm for graph-aware data �ow analysis under uncertainty

1: procedure analyzeGraphAware(model, constraint, uncertainties)
2: violations← ∅
3: �ltered ← ∅
4: variations← generateAllVariations(model, uncertainties)
5: tfgs← retrieveAllTFGs(model)
6: for tfg ∈ tfgs do ⊲ Analyze each TFG separately

7: for variation ∈ variations do ⊲ Filter relevant variations

8: �ltered ← �ltered ∪ filterVariation(model, tfg, variation, uncertainties)
9: end for

10: for variation ∈ �ltered do ⊲ Only analyze �ltered variations

11: modi�edtfg ← applyVariation(tfg, variation)
12: violations← violations ∪ analyze(modi�edtfg, constraint)
13: end for
14: end for

15: return violations
16: end procedure

As the three TFGs are independent, their variations can be analyzed independently. This

results in the lowered complexity of the graph-aware analysis (L3) compared to the scenario-
aware analysis (L2). Instead of having to apply all possible variations to each TFG, we can

�rst �lter the relevant uncertainty sources and then only analyze all variations of these

uncertainty sources. Note that this does not a�ect the identi�ed con�dentiality violations

as the data �ows represented by the TFGs are independent [233]. While the complexity is

reduced, the accuracy remains the same. The more independent data �ows there are, the

greater this e�ect becomes, as we assume in real software systems [102].

Algorithm 7.4 shows the algorithm for graph-aware data �ow analysis (L3). The approach

is similar to scenario-aware data �ow analysis shown in Algorithm 7.3, but comprises the

aforementioned �ltering. We iterate over all TFGs of a model in Line 6 and analyze each

TFG separately. This is possible because graph-aware analysis has the information of all

data �ows. For each TFG, we �lter the variations for relevant ones in Line 8. Afterward,

we run the analysis only on these variations. This is achieved by applying the variation

�rst in Line 11 and then forwarding the TFG to the data �ow analysis.

141

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

Algorithm 7.5 Algorithm for �ltering variations in graph-aware analysis

1: procedure filterVariation(model, tfg, variation, uncertainties)
2: applied ← getAppliedUncertainties(variation, uncertainties)
3: vertices← getVertices(tfg) ⊲ Iterate over all vertices

4: for vertex ∈ vertices do
5: for uncertainty ∈ applied do
6: if affects(uncertainty, vertex,model, variation) then
7: applied ← applied \ {uncertainty}
8: end if
9: end for

10: if applied = ∅ then ⊲ All uncertainties are relevant

11: return {variation}
12: end if
13: end for

14: return ∅ ⊲ At least one uncertainty is not relevant

15: end procedure

Algorithm 7.5 shows this �lter function. A variation is relevant for a given TFG if all

uncertainty sources that cause a change in the architectural model a�ect at least on vertex

of the TFG. We start by retrieving all uncertainties that have been applied in the given

variation in Line 2. This is the case, if the permutation that causes the variation [168]

changes an architectural element due to said uncertainty. For instance, if one variation

only changes architectural elements representing the data processing and the deployment

location in our running example, this function would yield the uncertainties U2 and U3.

Note that this function is called with all possible variations calculated in Algorithm 7.4.

Afterward, we iterate over all vertices of the TFG in Line 4. For each applied uncertainty,

we check whether this uncertainty a�ects the current vertex in Line 6. An uncertainty

a�ects a vertex i� it causes a variation in an architectural element that is represented by

the vertex. The underlying mapping of the data �ow analysis framework presented in

Section 7.2 is similar to the mapping between architectural models and DFDs discussed

in Section 6.5. In our running example, uncertainty in the data processing (U2) a�ects

all vertices in all TFGs representing this data processing. If we �nd such an uncertainty

impact, we remove the uncertainty from the list of applied uncertainties in Line 7.

The procedure ends if, at any point in the iteration over all vertices of a TFG, the list of

applied uncertainties gets empty. This is the case if all uncertainties considered in the

given variation are relevant to the TFG. Thus, the variation is relevant for the graph-aware
analysis and is returned in Line 11. If not all uncertainties that have been varied are

relevant, an empty set is returned instead in Line 14.

We explain the interplay of Algorithm 7.4 and Algorithm 7.5 based on the the three TFGs

of our running example, shown in Table 7.4. Here, the analyzing the �rst TFG representing

the support contact request and the last TFG representing the item purchase are the edge

142

7.5. Uncertainty Type-Agnostic Data Flow Analysis

input
search
details

process
request

customer1
query
data

?

databasereturn
data

U4: Provider
Trustworthiness

U3: Deployment

?

customer2
make

purchase
process

purchase …

? U2: Data Processing

…

? U1: User Input

Figure 7.9.: Excerpts of two Transpose Flow Graphs (TFGs) from the running example with annotated

uncertainty impacts and a con�dentiality violation, marked with a lightning bolt.

cases of the �lter algorithm. The �rst TFG has no relevant uncertainty source. Thus,

Algorithm 7.5 always returns an empty list except for the single variation, where no

uncertainty is applied. In this case, Line 6 trivially evaluates to true as the list already was

empty. The third TFG is a�ected by all four uncertainty sources U1 – U4. Thus, every

permutation of the uncertainties creates a variation that is relevant for the TFG and the

�lter has no e�ect. Regarding the second TFG, only four variations are relevant, i.e., the

variations that represent the scenarios of Uncertainty U3 and Uncertainty U4, Table 7.4.

Only these variations are returned by the �lter algorithm and analyzed using the data �ow

analysis. This also again shows the reduced complexity of the graph-aware analysis (L3),

as for most TFGs in the running example, not all variations are relevant.

The information about uncertainty sources, �ltered variations, TFGs, and con�dentiality

violations enables the tracing approach. For each con�dentiality violation, we can store the

related TFG and which variation has been applied in the analysis process. The reference

to the variation provides the knowledge about considered uncertainty sources and their

properties. This represents the information categories 1. – 8. from Table 7.1. Combined,

this provides software architects with comprehensive knowledge to better understand the

origin of the con�dentiality violations and to apply appropriate measures.

We illustrate this with one variation of the uncertainty sources of the running example.

Figure 7.9 shows excerpts of the TFGs that represent the querying of items and the making

of purchases. The annotated uncertainty represents the impact of the uncertainty due

to changes in the architectural model. For instance, in this variation, the deployment

location is the Cloud Service and the provider is classi�ed as Suspicious, see Table 7.2. This

143

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

uncertainty would cause a con�dentiality violation when the data is stored in the database,

as marked with the lightning bolt. As discussed with Table 7.4, this represents one of

the 48 possible variations. This con�dentiality violation can thus be traced back to the

uncertainties U3 and U4. The tracing follows the data �ow in inverse direction, and could

thus be interpreted as a reverse uncertainty impact analysis. The graphical representation

of the TFGs in Figure 7.9 also shows the independence to the other uncertainty sources, e.g.,

U1, and U2. They a�ect other vertices of another TFG and can thus be safely ignored when

interpreting the con�dentiality violation in the upper TFG. This bene�ts the understanding

of software architects and simpli�es both further analyses and the mitigation.

Graph-aware data �ow analysis (L3) minimizes the analysis complexity while enhancing

the expressiveness of the analysis results. As the presented approach for tracing uncertainty

builds on variation modeling [168, 265], any architectural element can be varied. This

enables an uncertainty type-agnostic approach. However, this approach has two major

shortcomings. First, variation modeling still requires some expert knowledge from the

software architects. Although they do not have to manually model the variations or alter

the DFDs by hand, they have to specify the correct variation types and variation points.

This requires them to understand which variation points match the uncertainty sources

they want to analyze. Failing to accurately represent the uncertainty in the variation

model can impair or even void the analysis results [103]. This discussion is similar to the

extension of the uncertainty impact analysis shown in Section 6.6.

Second, the approach ignores uncertainty interactions. For instance, if the Database Service
is deployed on-premise, Uncertainty U4 about the provider’s trustworthiness has no e�ect.

Because the uncertainty �lter presented in Algorithm 7.5 does not consider this, more

varied TFGs are analyzed than required. In this example, the variation of a suspicious
cloud provider and a deployment on premise can be safely ignored as there would be no

data �ow to the cloud provider in the �rst place. This marks the di�erence between a

graph-aware analysis (L3) and an impact-aware analysis (L4). The di�erence becomes

visible when comparing Figure 5.2 with Figure 7.9. The former shows uncertainty as

part of the DFD while the latter only considers changes in architectural elements that

are related to DFD nodes. Generating and �ltering variations cannot represent transitive

e�ects of uncertainty impacts within a DAG. To address this, we consider uncertainty as a

�rst-class concern in the data �ow analysis, creating an impact-aware analysis (L4).

� Finding: Considering Transpose Flow Graphs (TFGs) in the con�dentiality

analysis of uncertainty scenario combinations surpasses the analysis capabilities

of analyses that only consider all possible variations. Still, the resulting analysis

is limited by the expressiveness of variation modeling. To overcome this limita-

tion regarding the transitive impact, uncertainty has to be presented as �rst-class

concern within Data Flow Diagrams (DFDs) and the data �ow analysis.

144

7.5. Uncertainty Type-Agnostic Data Flow Analysis

Uncertainty Source
Collection

target
1 *

Uncertainty
Source

*sources

probability: Double

Uncertainty ScenarioArchitectural
Element

Architectural
Model

*elements

target

1 *

*

scenarios

Figure 7.10.: Overview of the meta model for expressing uncertainty sources and scenarios in architectural

models. Existing elements of the software architecture are highlighted gray.

7.5.2. Impact-Aware Data Flow Analysis Under Uncertainty

More than a decade ago, Garlan [80] proposed to consider uncertainty as a �rst-class

concern in software engineering. We follow this proposal to de�ne the last approach of

this chapter, an uncertainty type-agnostic and impact-aware data �ow analysis (L4). First,

we present a meta model for representing uncertainty sources as part of the architectural

model. This addresses the shortcoming regarding expert knowledge of variation modeling

[101, 168, 265]. Afterward, we introduce the notion of a Nondeterministic Data Flow

Diagram (NDFD) [104] that incorporates uncertainty as a �rst-class entity within the DFD.

We discuss how to analyze such NDFDs and handle simple uncertainty interactions in

DAGs while identifying con�dentiality violations. Last, we present our tooling r Abunai

that comprises uncertainty modeling and automated analysis support.

In presenting the previous approaches for analyzing structural uncertainty and environ-

mental uncertainty, and tracing uncertainty, we discussed di�erent approaches to express

uncertainty as part of the architectural model. This includes design decision models [143,

144, 266], FISs [37, 140], and variation modeling [101, 168]. They share the common short-

coming of requiring expert knowledge to bridge the gap between identifying uncertainty

sources and expressing them as part of the software architecture. We close this gap by

providing a meta model that connects the �ve uncertainty types presented in Chapter 5

to the architectural model. This approach is similar to the modeling of uncertainty for

impact analysis presented in Section 6.2, where we already addressed a similar issue.

Figure 7.10 shows the meta model for modeling uncertainty sources and scenarios as part

of the software architecture. We use the same terminology as the uncertainty classi�cation

presented in Chapter 5, i.e., uncertainty sources and scenarios, instead of design decisions,

or variations. To introduce this meta model, we only refer to the concept of an Architectural
Model, which comprises any number of Architectural Elements. Software architects de�ne

an Uncertainty Source Collection alongside the architectural model. This collection consists

of Uncertainty Sources that consist of Uncertainty Scenarios. Each source references one

Architectural Element, which represents its default scenario. Until this point, the software

145

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

Component
Uncertainty Source

Uncertainty Source
Collection

« abstract »
Uncertainty

Source

*sources

probability: Double

« abstract »
Uncertainty Scenario

*scenarios

Component
Uncertainty Scenario

AssemblyContext

Interface
Uncertainty Source

Interface
Uncertainty Scenario

Signature

External
Uncertainty Source

External
Uncertainty Scenario

UsageAssignee /
ResourceAssignee

Connector
Uncertainty Source

Connector
Uncertainty Scenario

ExternalCallAction /
EntryLevelSystemCall

Behavior
Uncertainty Source

Behavior
Uncertainty Scenario

SetVariableAction

EObjecttarget 1
*

target1
*

Figure 7.11.: Meta model of uncertainty sources and scenarios in the Palladio Component Model (PCM).

architecture is annotated with uncertainty sources like in the uncertainty impact analysis,

see Chapter 6. We extend this annotation by modeling any number of Uncertainty Scenario
that also refer to one Architectural Element. These scenarios represent alternative scenarios

of the Uncertainty Source any can additionally have a probability.

Depending on the type of modeled uncertainty, see Table 5.3, software architects can

re�ne the model. Recognized Ignorance is modeled as an Uncertainty Source that references

an Architectural Element. Scenario Uncertainty is modeled as a Uncertainty Source with

any number of Uncertainty Scenarios that also reference Architectural Elements. Statistical
Uncertainty is modeled by enriching the Uncertainty Scenarios with probabilities between 0

and 1. We require that all probabilities add up to 1. The probability of the default scenario

expressed by the Uncertainty Source is 1 minus the sum of the probabilities of all of its

scenarios. However, providing probabilities is optional, the �eld can be left empty to

describe Scenario Uncertainty. Depending on the available information, all options of the

category Uncertainty Type presented in Section 5.3 can be modeled and mixed. In our

running example, Uncertainty U4 is modeled by creating an Uncertainty Source that refers

to the Cloud Service’s trustworthiness with the alternative Uncertainty Scenario of being

suspicious, see Table 7.2. A high level of trust in the provider can be expressed, for example,

by a probability of 0.1 for the alternative scenario of a suspicious provider.

146

7.5. Uncertainty Type-Agnostic Data Flow Analysis

Uncertainty type Source target PCM element Alternative scenario targets

U1 Connector BuyEntryLevelSystemCall ErroneousEntryLevelSystemCall
MaliciousEntryLevelSystemCall

U2 Behavior UserDataProcessing BrokenEncryptionProcessing
BrokenValidationProcessing
EverythingBrokenProcessing

U3 Component DatabaseServiceOnPremise DatabaseServiceInCloud
U4 External ProviderTrusted ProviderSuspicious

Table 7.5.: Modeling the uncertainty sources and their scenarios in the running example.

We extend this meta model and apply it to the PCM, thereby replacing the Architectural
Elements of Figure 7.10 with concrete PCM element types. Figure 7.11 shows the resulting

meta model. We simplify some of the elements for the sake of clarity, e.g. by combining

UsageAssignees and ResourceAssignees, which are modeled separately. Similarly to the

overview, a Uncertainty Source Collection contains any number of Uncertainty Sources
that contain any number of Uncertainty Scenarios. Both the Uncertainty Source and the

Uncertainty Scenario target exactly one architectural element. Because the PCM is based

on the Eclipse Modeling Framework (EMF), the common super type is EObject.

The �ve uncertainty types of the category Architectural Element Type, see Table 5.2, have

their corresponding uncertainty sources and uncertainty scenarios. All sources inherit from

the abstract Uncertainty Source and all scenarios from the abstract Uncertainty Scenario,

respectively. For the sake of clarity, we leave out details like the inherited probability
�eld and the scenarios relation between all sub types. All sources and scenarios target

an PCM element type, e.g., Component Uncertainty Sources and Component Uncertainty
Scenarios target PCM AssemblyContexts. This ensures valid model instances, as both

sources and scenarios are required to reference the same PCM element type, e.g., di�erent

AssemblyContexts, or Signatures. Some types of Uncertainty Sources and Uncertainty
Scenarios can refer to more than one PCM element, e.g., Connector uncertainty, and

External uncertainty. In our implementation of this meta model [98], we realize this using

sub types of Connector uncertainty and External uncertainty, respectively, to ensure type

safety. Note that the referenced PCM elements are slightly di�erent compared to the

annotated elements of uncertainty impact analysis, as discussed in Section 6.2.

We apply this meta model to our running example to illustrate it with all uncertainty

sources U1 – U4. Table 7.5 shows the targeted elements of all uncertainty sources and

also the targeted elements of alternative scenarios. Thereby it realizes the scenarios

Table 7.2 and connects this collection to a concrete architectural model described based

on the PCM. The restriction to concrete architectural elements simpli�es the modeling

of uncertainty sources and their scenarios and also minimizes the risk of an erroneous

speci�cation. Compared to, e.g., variation modeling [168, 265], this bridges the gap between

the classi�cation of software-architectural uncertainty and the software architecture.

147

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

Assignment

in out

BehaviorLabel

Pin

src dst

src

dst
Flow

Node

in

out

Component
Uncertainty

Impact

 Connector
Uncertainty

Impact

Interface
Uncertainty

Impact

Behavior
Uncertainty

Impact

External
Uncertainty

Impact

Nondeterministic
DFD Element

Uncertainty
Impact 1..*

states
probability: Double

State

Figure 7.12.: Meta model of Nondeterministic Data Flow Diagrams (NDFDs).

� Finding: Modeling uncertainty sources and uncertainty scenarios that refer-

ence elements of the architectural model connects the classi�cation of software-

architectural uncertainty to architectural models. This provides the foundation for

analyzing uncertainty as �rst-class entity in software architecture.

To consider uncertainty not only as �rst-class entity within the software architecture but

also in architecture-based data �ow analysis, we need means to represent the impact in

DFDs. To this end, we discussed the mapping and the representation of uncertainty to

DFDs and DAGs in Section 5.5. We also introduced the notion of primary uncertainty that

a�ects vertices and secondary uncertainty that a�ects edges. By connecting this notion to

the previously introduced meta model for modeling uncertainty sources and scenarios,

we are able to de�ne an impact-aware data �ow analysis (L4). Uncertainty is sometimes

de�ned as “any departure from the unachievable ideal of complete determinism” [263],

see Section 2.1. We build on this idea by describing the lack of determinism and de�ne the

notion of Nondeterministic Data Flow Diagrams (NDFDs). Put simply, we extend Data

Flow Diagrams (DFDs) to incorporate uncertainty as �rst-class entity that is represented

by nondeterminism. Here, we also bene�t from the comprehensive foundations regarding

the representation of the impact of uncertainty in DFD, provided in Section 6.2.

Figure 7.12 shows the meta model of NDFDs, thereby extending the meta model of DFDs

with uncertainty impacts shown in Figure 6.3. Every DFD element originating from the

uni�ed modeling primitives [235] and highlighted in gray represents a Nondeterministic
Data Flow Diagram Element. Such an element has one or more States that reference the

element, or other elements. Trivially, an element with only one State that references the

148

7.5. Uncertainty Type-Agnostic Data Flow Analysis

element itself represents determinism. Thus, every DFD is also a valid NDFD, which lacks

nondeterminism, i.e., uncertainty. Uncertainty is represented by multiple States that can

additionally have a probability. Regarding the probability, the same rules apply as for the

meta model for uncertainty and scenarios in the architectural model.

This meta model enables the concise representation of uncertainty in DFDs. For instance,

Uncertainty U4 about the provider trustworthiness represents External uncertainty. It can

be expressed by an nondeterministic Label with two states: Trustworthy and Suspicious. The

same applies to the other uncertainty sources, e.g., Uncertainty U2 about the processing

can be represented by multiple alternative Assignments.

We reuse the mapping of uncertainty sources to impact locations within the DFD from

Section 5.5, and the mapping of PCM models to DFDs presented in Section 7.2. Additionally,

every Uncertainty Scenario from the meta model presented in Figure 7.11 is mapped to

a State of the NDFD meta model. The state representing the default scenario of the

Uncertainty Source references the DFD element itself. All alternative scenarios reference

the DFD elements that represent the targeted architectural elements of these scenarios.

The probability of a State corresponds to the probability of the Uncertainty Scenario.

We can apply this mapping to the modeled uncertainty sources and uncertainty scenarios

of the running example, shown in Table 7.5. The EntryLevelSystemCall that is referenced by

UncertaintyU1 is mapped to a nondeterministic DFD element and referenced by the default

state of this element. The DFD element has additional states to also represent erroneous

and malicious user input. Because Uncertainty U1 represents Connector uncertainty, the

nondeterministic DFD elements are �ows and assignments that set the labels for valid,

erroneous, or malicious input. However, due to the uncertainty, we cannot know which

assignment is applied, i.e., nondeterminism.

� Finding: Nondeterministic Data Flow Diagrams (NDFDs) consist of all Data

Flow Diagrams (DFDs) elements, which have one or multiple states. These states

represent uncertainty as a �rst-class concern in modeling and data �ow analysis.

The concept of states in NDFDs can be transferred to DAGs. This enables the application of

the data �ow analysis that operates on TFGs, which are DAGs. Here, we use the notion of

primary and secondary uncertainty. As discussed in Section 5.5, the �ve uncertainty types

can be represented by either primary or secondary uncertainty. Component uncertainty,

Connector uncertainty, and Interface uncertainty a�ect the data �ow, i.e., the edges of a

DAG. External uncertainty and Behavior uncertainty a�ect nodes, i.e., the vertices of a

DAG. We use this mapping of the elements of a DFD—that are also elements of a NDFD—to

simplify the data �ow analysis. In mapping PCM elements to TFGs, we map the uncertainty

sources and scenarios to primary and secondary uncertainty. The resulting DAG with

these uncertainties represents a NDFD and comprises uncertainty as a �rst-class entity. To

repeat from Section 5.5, a DAG � = (+ , �) consists of vertices + and edges �. All primary
uncertainty impacts form a subset of all vertices+D ⊆ + . All secondary uncertainty impacts

form a set �D = {�D1, . . . , �D= }, where each set comprises alternative edges.

149

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

make
purchase

customer ?

enter
valid
data

enter
error.
data

enter
malicious

data

U1: User Input

process
purchase

?

U2: Data Processing

store
data1

?
store
data2

database2

database1

U4: Provider
Trustworthiness

U3: Deployment

?

return

Figure 7.13.: Directed Acyclic Graph (DAG) of the Transpose Flow Graph (TFG) representing the item

purchase in the running example, with primary and secondary uncertainty, denoted by question marks.

The �rst TFG of the support contact request contains no uncertainty and is thus not

relevant, see Table 7.4. The DAG of the second TFG is shown while discussing primary
and secondary uncertainty in Figure 5.2. To make the list of DAGs of the running example

complete, Figure 7.13 shows the DAG of the third TFG of the running example, which

represents the purchase of items. This DAG contains all four uncertainties U1 – U4.

The secondary uncertainties are shown as alternative edges. As discussed above, the Con-
nector uncertainty of the user input (U1) and the Component uncertainty of the deployment

(U3) represent secondary uncertainty. The primary uncertainties are annotated to vertices.

The Behavior uncertainty of the data processing (U2) and the External uncertainty of

the provider trustworthiness (U4) represent primary uncertainty. The scenarios of the

secondary uncertainty are visible in the graphical representation of the DAG, e.g., the

alternative types of user input in Uncertainty U1. The scenarios of primary uncertainty

are hidden in this view, because they a�ect DFD elements that are represented by the

vertices, e.g., the Label of the database2 being Trustworthy, or Suspicious. Here, we refer to

Section 7.2 for our introduction on TFGs and their relation to DAGs.

The TFG shown in Figure 5.2 is also suitable to illustrate the mapping from an architectural

model with uncertainty sources and scenarios to NDFDs and DAGs. Table 7.5 shows

three di�erent scenarios regarding Uncertainty U1 of the user input. As this is Connector
uncertainty and modeled with three alternative EntryLevelSystemCalls, the resulting DAG

also comprises the corresponding vertices, e.g., enter valid data and enter malicious data,

150

7.5. Uncertainty Type-Agnostic Data Flow Analysis

Algorithm 7.6 Algorithm for impact-aware data �ow analysis under uncertainty

1: procedure analyzeImpactAware(model, constraint, uncertainties)
2: violations← ∅
3: input ← retrieveAllTFGs(model)
4: output ← ∅
5: for tfg ∈ input do ⊲ Processing of all uncertainties

6: sources← getSources(tfg) ⊲ Start the evaluation at each source

7: for source ∈ sources do
8: output ← output ∪ processVertex(B>DA24,D=24AC80=C84B, {tfg})
9: end for

10: end for

11: for tfg ∈ output do ⊲ Con�dentiality analysis on the resulting TFGs

12: violations← violations ∪ analyze(tfg, constraint)
13: end for

14: return violations
15: end procedure

with a secondary uncertainty. In the NDFD, this is represented by a nondeterministic

element with three states, which translates to this part of the DAG. The same applies

to Uncertainty U3 with the two deployment options. The primary uncertainties U2
and U4 have been discussed in the previous paragraph. Here, the scenarios are not

visible in the DAG, because it only represents the Nodes of an NDFD as vertices, and

primary uncertainty a�ects these vertices. Nevertheless, the label propagation presented

in Section 7.2, is presented with alternative DFD elements, e.g., alternative Assignments
representing the data processing alternatives in Uncertainty U2. In sum, the notion of

TFGs remains suitable to model and analyze DAG, also under uncertainty.

We build on this representation of NDFDs as primary and secondary uncertainty in DAGs

to de�ne impact-aware data �ow analysis (L4). Based on this discussion, di�erentiating

between the di�erent analyses is straightforward. Scenario-aware data �ow analysis (L2)

iterates over all scenarios, without considering TFGs, as shown in Algorithm 7.3. Graph-
aware data �ow analysis (L3) iterates over all TFGs, without considering uncertainty

a�ecting individual vertices, as shown in Algorithm 7.4. Impact-aware data �ow analysis

(L4) iterates over vertices and considers uncertainty as a �rst-class entity in the analysis

process. This again reduces the number of TFGs that have to be analyzed, and it enables

the consideration of the transitive impact of uncertainty and uncertainty interactions.

Algorithm 7.6 shows the impact-aware data �ow analysis. It consists of two steps. First, all

uncertainties in all TFG are processed. By following the �ow of data starting from each

source, every impact of uncertainty has to be considered in the processing in Line 8. We

start at the sources because uncertainty follows the �ow of data, as found in Section 6.4.

Thus, processing the impact of uncertainty in this direction simpli�es the analysis. The

resulting TFGs are input to the con�dentiality analysis in Line 12. This analysis is executed

151

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

Algorithm 7.7 Algorithm for processing vertices with primary and secondary uncertainty

1: procedure processVertex(vertex, uncertainties, tfgs)
2: if isInPrimaryUncertaintySet(vertex, uncertainties) then
3: for state ∈ getStates(vertex, uncertainties) do
4: for tfg ∈ tfgs do
5: newtfg ← applyPrimaryUncertainty(vertex, state, tfg)
6: tfgs← tfgs ∪ {newtfg}
7: end for
8: end for
9: end if

10: for edge ∈ getOutgoingEdges(vertex) do
11: if isInSecondaryUncertaintySet(edge, uncertainties) then
12: for tfg ∈ tfgs do
13: newtfg ← applySecondaryUncertainty(vertex, edge, tfg)
14: tfgs← tfgs ∪ {newtfg}
15: end for
16: end if
17: end for
18: for successor ∈ getSuccessors(vertex) do
19: tfgs← tfgs ∪ processVertex(successor, uncertainties, tfgs)
20: end for

21: return tfgs
22: end procedure

separately on every resulting, independent TFG. The collected violations are returned

in Line 14. Algorithm 7.7 shows the processing of primary and secondary uncertainty in

impact-aware data �ow analysis. Put simply, instead of combining all possible scenarios

of all uncertainties (L2), or all scenarios on one TFG (L3), we recursively apply only the

scenarios that have an actual impact on each other (L4). The processVertex function is

called with a vertex, initially the source of a TFG, all uncertainties, and a set of TFGs,

initially only the TFG itself.

We �rst handle primary uncertainty, starting in Line 2. If the vertex is in the set of vertices

a�ected by primary uncertainty+D ⊆ + , we apply every state from the NDFD to every TFG

in the set, thereby creating and adding new TFGs. Due to the set semantics, the original

TFG representing the default scenario is not contained twice. For instance, the primary
uncertainty U2 with 4 scenarios—and thus, 4 states of the NDFD element—causes 4 new

TFG. Afterward, we handle secondary uncertainty, starting in Line 10. Here, we �lter all

outgoing edges for those that are in the set of secondary uncertainty sets, i.e., edges in

one �D8 ∈ �D . For every identi�ed, outgoing edge, we apply the uncertainty to all TFGs in

Line 13, thereby creating copies of all TFGs with only one of the outgoing edges in �D8 .

For instance, the secondary uncertainty U1 with 3 states as shown in Figure 7.13 causes

three copies per TFG, with only one outgoing edge from the make purchase vertex.

152

7.5. Uncertainty Type-Agnostic Data Flow Analysis

Last, we continue with all successors of the analyzed vertex until a sink is reached. Because

this recursive call to the processVertex function in Line 19 contains the current set of TFGs,

the transitive impact of uncertainty is considered. Note that the realization of this algorithm

in our data set [98] comprises optimizations of this algorithm, similar to the algorithms

shown in Section 6.3. In our exemplary DAG shown in Figure 7.13, this results in a lower

number of resulting TFGs compared to graph-aware analysis (L3). After the processing of

the vertex process purchase, we have 12 TFGs, caused by the 3 scenarios of Uncertainty U1
times the 4 scenarios of Uncertainty U4. However, after evaluating Uncertainty U3, only

the lower branch is a�ected by Uncertainty U4. Thus, this uncertainty is only applied

to those TFGs that represent the state where the data �ows to this branch instead of to

all TFGs. To achieve this, we have to consider the transitive e�ect of uncertainty in the

analysis, which requires the representation of uncertainty as �rst-class entity.

� Finding: Representing Nondeterministic Data Flow Diagrams (NDFDs) as Di-

rected Acyclic Graphs (DAGs) with uncertainty as a �rst-class entity enables the

consideration of transitive e�ects of uncertainty and interactions of uncertainty

sources. Additionally, the analysis scalability is enhanced because the number of

required Transpose Flow Graphs (TFGs) is reduced.

In the introduction of this chapter, we highlighted the need for automated con�dentiality

analysis. We realize the concept of an impact-aware data �ow analysis based on the

framework presented in Section 7.2. Our tooling r Abunai provides modeling support for

software architects and an automated, uncertainty impact-aware analysis of con�dentiality.

The implementation is part of the data set [98].

Similarly to the tool support for uncertainty impact analysis, we build on the Palladio

tooling [205, 207] that o�ers a meta model, the PCM, and graphical editor support. Our Java-

based open-source implementation realizes the algorithms presented above. The analysis

requires a PCM model and an uncertainty model that comprises uncertainty sources and

scenarios as input. Our implementation is closely oriented to the meta model shown in

Figure 7.11. The analysis provides a number of helpful outputs for software architects.

Besides identifying con�dentiality violations, combinations of uncertainty scenarios can

be generated, compared, and related to the violations. This includes calculating the overall

probability by multiplying the probability of analyzed uncertainty scenarios. Additionally,

metrics regarding the analysis complexity are shown. It is also possible to build on the

generated TFGs to create further analyses or end-to-end approaches [273]. We showcase

r Abunai based on the running example in Appendix C.

� Finding: The uncertainty impact-aware analysis of con�dentiality can be fully

automated based on the Palladio Component Model (PCM) and the existing tool-

ing of the Palladio approach. Uncertainty sources and scenarios are modeled as

�rst-class entities within the software architecture and analyzed while considering

the transitive impact of uncertainty and uncertainty interactions. The resulting

analysis can be used for the creation of end-to-end approaches.

153

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

7.6. Complexity of Data Flow Analysis Under Uncertainty

Throughout this chapter, we discussed the complexity and scalability of the di�erent

approaches for data �ow analysis under uncertainty, i.e., scenario-aware analysis (L2),

graph-aware analysis (L3), and impact-aware analysis (L4). Data �ow-based con�dentiality

analysis, such as our framework presented in Section 7.2, scale with the number of analyzed

data �ows, i.e., the number of TFGs [36, 231]. Additionally, the number of derived and

propagated labels a�ects the analysis’s scalability. Thus, the underlying goal is to minimize

the number and size of the analyzed TFGs under uncertainty without a�ecting the analysis

results in terms of accuracy. Furthermore, uncertainty follows the data �ow, see Section 6.4,

and can a�ect other uncertainties on this way, see Section 6.7. Encountering this challenge

and analyzing combinations of uncertainty scenarios can lead to a combinatorial explosion

[143]. To conclude the discussion about the awareness levels started in Section 7.3, we

revisit the complexity of the approaches L2 – L4. We skip the �rst two levels as they are

not expedient to handle uncertainty in data �ow analysis. This addresses Problem P3.

Note that we do not use the Big O notation [141] in this section. As discussed previously,

the worst-case performance of all three levels (L2 – L4) is shown in software systems

with only one data �ow and interdependent uncertainty sources. In this case, all possible

variations have to be tested on all TFGs, i.e., scenario-awareness. This results in a worst-case

asymptotic growth of O(=:), where = is the number of uncertainty scenarios and : is

the number of uncertainty sources. We do not consider the number of TFGs here, as it

is negligible for large : . Ultimately, this applies to all three levels and their algorithms.

Thus, we focus on the actual count of TFGs to analyze in this section. Note that we also

do not discuss the complexity of applying uncertainty to the TFGs in preparation for

the data �ow-based con�dentiality analysis. All three algorithms can be implemented

based on Depth-First Search (DFS) that is repeated for each uncertainty scenario, i.e.,

O(= · (+ + �)), where = represents the total number of scenarios, + the vertices and � the

edges. Compared to the large growth of TFGs to analyze uncertainty and compared to the

run time of the con�dentiality analysis [231], this e�ect is also negligible.

Figure 7.14 shows a simpli�ed overview of all three TFGs of the running example. We

replace the vertices’ names with numbers but keep the primary uncertainty annotated

to vertices, and secondary uncertainty annotated to edges. Note that we use a slightly

di�erent notation in this section to simplify the mathematical notation, e.g., D1 refers to

U1. This �gure is based on Table 7.2, showing the scenarios of uncertainties U1 – U4, and

Table 7.4, showing the mapping of uncertainty sources to TFGs. More detailed views of

the second and third TFGs are shown in Figure 5.2 and Figure 7.13, respectively. We also

include the �rst TFG representing the support contact request of the Customer. However,

this TFG is not a�ected by uncertainty, see Chapter 3.

Let � = {61, 62, . . . , 6=} where = ≥ 1 be the nonempty �nite set of all TFGs extracted from

the architectural model, as introduced in Section 7.2, and let |� | be its size. In our running

example, � = {61, 62, 63} and |� | = 3. Put simply, there are 3 extracted TFGs. Let * =

{D1, D2, . . . , D<} where< ≥ 1 be the nonempty �nite set of all uncertainties, both primary
and secondary, and let |* | be the its size. In our running example,* = {D1, D2, D3, D4} and

154

7.6. Complexity of Data Flow Analysis Under Uncertainty

10 3

u1

5

?

u2

4

?

2

8

?

6
u3

9

7

10
?u4

1 2 0

6

?

3 4

7 8

5

9 10
u4

u3

?

1 2 0 3 g1:

g2:

g3:

Figure 7.14.: Simpli�ed overview of all three Transpose Flow Graphs (TFGs) of the running example with

annotated primary and secondary uncertainties.

|* | = 4. Put simply, there are 4 uncertainties. We further split* in*% ⊆ * to represent

all primary uncertainties and*(⊆ * to represent all secondary uncertainties in* . This

also means that* = *% ∪*(and*% ∩*(= ∅. In our running example, *% = {D2, D4} and

*(= {D1, D3}. For each uncertainty source D ∈ * , let (D = {BD1, BD2, . . . , BD? } where ? ≥ 1 be

the nonempty �nite set of all uncertainty scenarios of D and let |(D | its size. As discussed

with NDFDs in Section 7.5, ? ≥ 1 is trivially satis�ed, as every uncertainty source has

at least one default scenario. In our running example, (D1 = {B1, B2, B3} and |(D1 | = 3. Put

simply, the �rst uncertainty has three uncertainty scenarios, i.e., valid input, erroneous

input, and malicious input, see Table 7.2.

Each uncertainty scenario brings variation into a TFG and thus has to be analyzed sep-

arately. This also applies to combinations of uncertainties, where every combination of

all relevant scenarios of all relevant uncertainties has to be analyzed separately, i.e., the

Cartesian product [76]. To minimize the analysis runtime and maximize its scalability, it is

thus important to make a good estimation of what is relevant. Otherwise, the combination

of scenarios can lead to the already discussed combinatorial explosion [143]. We de�ne

as the number of TFGs that have to be analyzed in total. In the following, we de�ne

three formulas to calculate this number, based on the underlying approach. We de�ne

#(for the scenario-aware analysis (L2), #� for the graph-aware analysis (L3), and #� for

the impact-aware analysis (L4). Note that all three analysis approaches �nd the same

155

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

con�dentiality violations due to uncertainty, i.e., the accuracy is not a�ected. However,

the number of TFGs that have to be analyzed can di�er.

The scenario-aware analysis (L2) does not consider TFGs but only combinations of scenar-

ios. Thus, for every possible scenario combination, every TFG has to be analyzed which

represents the least optimized approach. We denote:

#(= |� | ·
∏
D∈*
|(D |

This is equivalent to generating all possible scenario combinations, applying them to all

TFGs, and analyzing them, as introduced in Algorithm 7.3. In our running example with

3 TFGs and 4 uncertainty sources, this means we have to analyze #(= |� | · |(D1 | · |(D2 | ·
|(D3 | · |(D4 | = 3 · 3 · 4 · 2 · 2 = 144 TFGs. This is equivalent to analyzing all 3 TFGs in all 48

scenarios, as discussed in Section 7.4.

The graph-aware analysis (L3) does take TFGs into account and thus only has to consider

combinations of scenarios in the same TFG. This is based on the �nding that uncertainties

in di�erent �ows, i.e., di�erent TFGs, cannot a�ect each other, as discussed in Section 6.7.

This highly reduces the amount of TFGs that have to be analyzed, especially in larger

systems with many independent data �ows. To count the uncertainty sources D ∈ * and

its scenarios (D that impact a speci�c TFG 6 ∈ � , we de�ne the impact function:

5 (6,D) =
{
1, if there is no impact of D on 6

|(D |, otherwise

In our running example, 5 (62, D3) = 2, because the uncertainty D3 in the TFG 62 has 2

scenarios. To recall, the second TFG represents the querying of items and Uncertainty U3
represents the deployment with the scenarios of being deployed on-premise or in the cloud.

5 (61, D3) = 1, because the uncertainty D3 has no e�ect on the �rst TFG. Put simply, this

function yields the number of scenarios if the uncertainty is relevant for a TFG; otherwise,

it returns 1. Using this function, we denote:

#� =
∑
6∈�

∏
D∈*

5 (6,D)

This is equivalent to iterating over all TFGs and only generating the scenario combinations

relevant for the current TFG, as introduced in Algorithm 7.4. In our example, the �rst

TFG has no uncertainty and 5 always returns 1. The second TFG is only impacted by

D3 and D4 while the third TFG is impacted by all uncertainties. In sum, this means:

#� = (1 · 1 · 1 · 1) + (1 · 1 · 2 · 2) + (3 · 4 · 2 · 2) = 1 + 4 + 48 = 53 TFGs. The number of TFGs

that have to be analyzed by the graph-aware approach is notably smaller compared to the

scenario-aware approach, i.e., 53 < 144. Although the third TFG represents the worst case

of combining all scenarios, the other TFGs are not a�ected. Note that this formula only

results in the same number as the scenario-aware approach if all TFGs are a�ected by all

156

7.6. Complexity of Data Flow Analysis Under Uncertainty

uncertainties. Trivially, this is the case if there is only one data �ow within the system.

However, we assume that real-world software systems comprise more than a single data

�ow [102]. Such a system would only provide a single functionality via a single interface

with a single use case without any branching. Thus, as TFGs are independent and an

uncertainty impact can always assigned to a single TFG, we �nd in general:

#� ≤ #(

The impact-aware analysis (L4) extends the graph-aware analysis and additionally con-

siders the transitive e�ect of the uncertainty scenarios. By incrementally evaluating

uncertainty scenarios, the impact of previous uncertainties in the same TFG can be con-

sidered. This enables us to analyze only those scenarios that are still relevant after other

uncertainty scenarios have been applied in the direction of the data �ow. We consider

uncertainty interactions between the secondary uncertainties*(and primary uncertainties

*% . If an component uncertainty, interface uncertainty, or connector uncertainty changes

the edges of a TFG, this a�ects all vertices—and all primary uncertainties that a�ect such

vertices—in the direction of the data �ow, see Section 7.5.

The easiest way to consider this in the calculation of relevant TFGs is to process all TFGs

6 ∈ � . Similar to Algorithm 7.7, we replace all secondary uncertainties D ∈ *(in all

TFGs 6 ∈ � with their scenarios. Following the notion introduced in Section 5.5, this

means iterating over all �D8 ⊆ �, i.e., all sets of alternative edges representing a secondary
uncertainty that form a subset of all edges of a DAG. For each edge 4 ∈ �D8 , we create

a copy of the current TFG that contains the edge 4 but none of the other edges in �D8 .

The processing continues replacing secondary uncertainty on the resulting TFGs until all

secondary uncertainties have been processed. In sum, we de�ne the function ? (�,*) that

takes a set of TFGs� and yields a set of TFGs, where all secondary uncertainties in* have

been processed as described above. As all uncertainties have at least one default scenario,

we can say: |� | ≤ |? (�,*) |. Note that in contrast to Algorithm 7.7, we do not additionally

process primary uncertainty for the calculation as this uncertainty cannot alter edges in

the TFG. Trivially, this means |? (�,*) | = |? (�,*() | and |� | = |? (�,*%) |.

In our running example, the second TFG 62 has one secondary uncertainty D3. Applying

this processing results in replacing the uncertainty D3 with its a�ected edges, thereby

creating 2 new TFGs, one with the edge 2 → 3 and a second one with the edge 2 → 6, see

Figure 7.14. Thus, |? ({62},*) | = 2. The third TFG 63 has two secondary uncertainties D1
and D3, with 3 and 2 scenarios, respectively. Thus, |? ({63},*) | = 3 · 2 = 6. We denote:

#� =
∑

6∈? (�,*)

∏
D∈*%

5 (6,D)

This is equivalent to iterating over all vertices of all TFGs and taking the transitive impact

of secondary uncertainties into account, as introduced in Algorithm 7.6. Note that we only

calculate the product of primary uncertainties, as we already considered the impact of

the secondary uncertainties in the processing ? (�,*). In our running example, this does

157

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

a�ect the calculation of the second and third TFG. As discussed previously, the second

TFG has one secondary uncertainty. After the processing of this uncertainty, only one

of the two resulting TFGs is a�ected by the remaining primary uncertainty. This is the

TFG that represents the deployment in the cloud (U3) that is a�ected by the provider’s

trustworthiness (U4). This e�ect becomes even bigger in the third TFG. Here, only half

of the resulting TFGs represent a deployment in the cloud (U3). In sum, this means:

#� = (1 · 1) + ((1 · 2) + (1 · 1)) + ((4 · 2) + (4 · 2) + (4 · 2) + (4 · 1) + (4 · 1) + (4 · 1)) =
1 + (2 + 1) + (8 + 8 + 8 + 4 + 4 + 4) = 1 + 3 + 36 = 40 TFGs. We use parenthesis to highlight

the TFGs after the processing. This represents the minimum of scenarios and TFGs that

have to be analyzed to identify all potential con�dentiality violations, i.e., 40 < 53 < 144.

As we replace every secondary uncertainty in * with additional graphs in � , we move

them from the inner product to the outer sum in the formula. Thus, we �nd in general:

#� ≤ #� ≤ #(

7.7. Assumptions and Limitations

In this section, we discuss the assumptions and limitations of the di�erent approaches of

data �ow analysis under uncertainty presented in this chapter. This includes assumptions

of single approaches and more general assumptions made in this chapter. Note that we skip

the limitations of the lower awareness levels L0 – L3 compared to impact-aware analysis

(L4) as we already comprehensively discussed their di�erences throughout this chapter.

The same applies to the comparison of type-speci�c and type-agnostic approaches.

Limitations of the data flow analysis framework Our approach for data �ow analysis

and the data �ow analysis framework [36] are based on previous work in this �eld [226,

227, 232, 233, 234, 235, 236, 237]. Thus, we inherit some of the limitations. First, the

analysis operates on type-level, e.g., by analyzing usage scenarios and not individual

users. This restricts the expressiveness of analyzable con�dentiality requirements [233].

Second, all four analysis approaches use the PCM as an architectural model as previously

discussed in Section 6.8. However, as the majority of the analysis is conducted on DFDs,

the concepts should be generalizable. First steps in this direction have already been taken

[36]. Third, the analysis does not respect state or time which limits the expressiveness

but simpli�es the analysis complexity [233]. Fourth, the labels used for con�dentiality

analysis represent discrete value sets, and there is no support for expressing continuous

values other than mapping them to discrete values [233]. We refer to Seifermann [233] for

more detailed explanations of the reasoning behind these limitations. Last, cycles within

architectural models only have limited e�ects by only being traversed once. However,

there exist approaches for handling cycles in the construction of DAGs [12, 148].

158

7.7. Assumptions and Limitations

Independence of data flow paths Seifermann [233] discussed the assumption of indepen-

dent data �ow paths in data �ow analysis. Our data �ow analysis framework presented

in Section 7.2 follows this by assuming independence of extracted TFGs regarding the

propagated labels that represent con�dentiality-related characteristics of the software

system. Furthermore, we also assume that the impact of uncertainty in TFGs can be

analyzed independently. We argue that this assumption is reasonable. The former can lead

to an overestimation of con�dentiality violations, which is acceptable. The latter has been

thoroughly discussed in Chapter 5 and Chapter 6.

Modeling uncertainty scenarios The majority of approaches presented in this chapter

are based on the assumption that modeling uncertainty scenarios is reasonable to express

their e�ects on software systems, e.g., using design decision models [144], variation models

[265], or uncertainty models [101]. The description of uncertainty using scenarios has

been discussed in the literature [11, 162, 263], see Table 2.1. Troya et al. [255] conducted a

Systematic Literature Review (SLR) with 123 papers and support this assumption. They

found that design uncertainty is usually expressed using uncertainty scenarios.

Analyzing unanticipated change We assume that the information required to model and

analyze the software system under uncertainty is available to software architects. A similar

assumption has been made in the underlying approach for data �ow analysis [233] and

also in earlier discussions of assumptions in Section 5.8 and Section 6.8. Similarly, we

cannot express or analyze not yet identi�ed uncertainty sources. Nevertheless, we provide

software architects with means to express uncertainty models within the architectural

models and re�ne this model once more knowledge is gained. The connection of data �ow

analysis to our catalog presented in Section 5.6 further addresses this limitation.

Multiple data flows and secondary uncertainty In this chapter, we present multiple ap-

proaches for data �ow analysis under uncertainty. The increased scalability of the graph-
aware analysis (L3) and impact-aware analysis (L4) is based on two assumptions on the

modeled software system. First, we assume that real-world software systems comprise

more than a single data �ow path. As discussed previously, such a system would only

provide a single functionality via a single interface with a single use case without any

branching. Second, we assume the existence of secondary uncertainty within the software

system. We argue that this is reasonable as three of the �ve uncertainty types introduced

in Table 5.2 represent secondary uncertainty. If this assumption does not hold, the latter

analysis approaches are still applicable. However, their bene�ts regarding the analysis

complexity are decreased.

Limited support for uncertainty interactions Based on our �ndings on uncertainty prop-

agation and UFDs presented in Section 6.7, the impact-aware analysis (L4) supports simple

uncertainty interactions. However, this support is limited to the impact of secondary
uncertainty on primary uncertainty. Put simply, altering the edges of a DAG can a�ect

159

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

the �ow of data to vertices and thus can also a�ect the impact of primary uncertainty on

these vertices. Further uncertainty interactions can happen, e.g., between two primary
uncertainties where one uncertainty voids the impact of another uncertainty. This limi-

tation is similar to the overestimation of the uncertainty impact discussed in Section 6.8.

Addressing this requires a higher expressiveness in the modeling and analysis as more

�ne-grained interactions between uncertainty and con�dentiality have to be considered.

Mitigation of uncertainty We consider the automated mitigation of uncertainty as out

of the scope of this thesis. This includes the automated repair of uncertainty-a�icted

software systems due to con�dentiality violations. Additionally, we only focus on �nding

all potential con�dentiality violations due to uncertainty. Analysis approaches that aim for

fast feedback for software architects by returning partial results could thus further increase

the analysis scalability. We emphasize that advanced approaches to analysis, mitigation,

and repair are expedient and that our analysis approaches can provide a comprehensive

foundation for such endeavors.

Uncertainty in confidentiality requirements We do not consider any uncertainty within

con�dentiality requirements that can occur, e.g., due to the relation to legal assessment

[39]. This would require means to express uncertainty-related variation not only as part

of the software system but also in the speci�cation of data �ow constraints. This could be

achieved, e.g., by extending existing Domain-Speci�c languages (DSLs) [36, 105]. Similar

to the previous limitation, we emphasize the importance of this research but consider it to

be out of scope for this thesis.

7.8. Summary and Outlook

In this chapter, we presented multiple approaches to uncertainty-aware data �ow analysis

to identify potential con�dentiality violations due to uncertainty. This represents our third

Contribution C3 and provides an answer to ä Research Question 3.

First, we discussed the foundations required to de�ne uncertainty-aware data �ow analyses,

as described with ProblemP1. We presented an extensible framework for data �ow analysis

[36] that enables both black-box and white-box extensions [111, 253] of con�dentiality

analysis. Here, we also introduced the concepts of TFGs and label propagation. Afterward,

we discussed which information is available in data �ow analysis under uncertainty and

how this information can be used. To that end, we speci�ed �ve levels (L0 – L4) of

uncertainty awareness: The lack of uncertainty-awareness (L0), naive approaches (L1),

scenarios-awareness (L2), graph-awareness (L3), and impact-awareness (L4). Uncertainty-

aware data �ow analyses that fall into one of these categories can be further categorized

into type-speci�c and type-agnostic approaches.

160

7.8. Summary and Outlook

Building on these foundations, we presented two type-speci�c approaches to data �ow

analysis under uncertainty. This addresses Problem P2. First, we introduced a scenario-
aware analysis (L2) of structural uncertainty. By combining the design space exploration

approach PerOpteryx [143, 144] with data �ow analysis, we can identify con�dentiality

violations in software architecture candidates. This enables the analysis of structural

uncertainty, e.g., due to an uncertain deployment of a component. Second, we introduced

a graph-aware analysis (L3) of environmental uncertainty. Here, we used fuzzy inference

in the form of FISs to express natural factors in the environment of a software system that

can a�ect access control decisions and, thus, con�dentiality. We found that both analysis

approaches share the representation of uncertainty sources as one or multiple scenarios.

Last, we moved towards type-agnostic approaches for uncertainty-aware data �ow analysis

to address Problem P3. First, we presented a graph-aware analysis (L3) that uses variation

modeling [168, 265] to trace con�dentiality violations back to uncertainty sources. Being

type-agnostic, this approach supports all �ve uncertainty types introduced in Section 5.3.

To also support simple forms of uncertainty interactions, we introduced an impact-aware
analysis (L4) thereafter. We closed the gap between the uncertainty classi�cation and

con�dentiality analysis by providing a meta model for modeling uncertainty sources and

scenarios. The analysis incrementally considers the impact of uncertainty within the data

�ow and thus can respect relations between multiple uncertainties. We also introduced

r Abunai, our PCM-based tooling for uncertainty impact-aware data �ow analysis (L4).

We concluded this discussion by comparing the complexity of the presented analyses.

ä Research Question 3 asked about the analysis of con�dentiality requirements using

architecture-based data �ow analysis that considers uncertainty within the architectural

model and thus becomes uncertainty-aware. To answer this question, we provided a

discussion of available information, resulting awareness levels of data �ow analyses and

analysis complexity and scalability. Furthermore, we presented four analysis approaches

that di�er in supported uncertainty types, awareness levels (L2 – L4) and type speci�city.

As pointed out earlier, there is no single best answer to the question of architecture-based

con�dentiality analysis under uncertainty. Thus, our approach to this chapter was to

provide a comprehensive discussion of multiple solutions and their trade-o�s.

There are multiple bene�ts of the variety of analysis approaches presented in this chapter

with Contribution C3. In general, considering uncertainty within an analysis enables more

precise and more comprehensive analysis results of a model and its context [194, 272, 273].

Here, all four approaches can be used standalone, thus providing means to model and

analyze di�erent types of uncertainty. An automated analysis like r Abunai supports

architects by reducing the manual e�ort, especially in large models with many independent

data �ows and many uncertainty sources [101]. Furthermore, describing uncertainties as

a �rst-class entity and part of the architectural model helps in the documentation [104].

Although we focused on con�dentiality, our impact-aware analysis is also an approach to

consider uncertainty interactions within the architecture-based analysis. Together with

our �nding on UFDs, this can be used to further address the UIP. Last, our data �ow

analysis framework can be used to de�ne new analysis approaches, even without the need

to focus on uncertainty [36].

161

7. Uncertainty-Aware Data Flow Analysis to Identify Con�dentiality Violations

The contribution provided in this chapter was based on the �ndings from # Chapter 5:
Identi�cation and Classi�cation of Uncertainty Regarding Con�dentiality and

Chapter 6: Uncertainty Propagation to Enable Uncertainty Impact Analysis.
We used many of the concepts introduced in these earlier chapters, e.g., the �ve uncertainty

types, or the representation of uncertainty in DAGs as primary and secondary uncertainty.

Also, the foundations for uncertainty propagation and interaction were laid in these

chapters. The con�dentiality analysis with respect to uncertainty represents the last step

of the procedure presented in # Chapter 4: Overview. The next chapters show an

overview of # Chapter 8: Evaluation Scenarios and then present the # Chapter 9:
Evaluation of all contributions.

7.9. In Simpler Words

Con�dentiality describes the property that information is not disclosed to persons or

organizations that should not see this information. Put simply, if you tell me a secret, I

should keep it secret—treating it con�dential. The same applies to software systems and

the data that is handled by these systems. If you enter your personal data, such as your

name, date of birth, or credit card details, into an online shop, you assume that you can

trust the shop and that your information is treated con�dentially.

Architecture-based con�dentiality analyses have been proposed to analyze the con�den-

tiality of a software system at a high abstraction or early in the system design. These

analyses use a model of the system and con�dentiality requirements as input and identify

con�dentiality violations. For example, if a law requires your con�dential data to be

stored on a server in the same country, but the system sends it across a border, this would

represent a con�dentiality violation. To identify such violations, we analyze all data �ows

in a software architecture—this is called data �ow analysis.

In the previous chapters, we already introduced the notion of uncertainty and also discussed

that uncertainty can negatively impact a software system’s con�dentiality. For instance,

if we do not know whether your data is actually sent to a server in another country, we

cannot state that it is con�dential. To identify con�dentiality violations under uncertainty,

we de�ne several uncertainty-aware data �ow analyses. In this chapter, we present four

di�erent analysis approaches that use di�erent algorithms to see how uncertainty impacts

con�dentiality. Some of these approaches are tailored to one uncertainty type, such as

uncertainty in a software system’s environment. Other approaches support all uncertainty

types that have been identi�ed in Chapter 5. We call the former type-speci�c analyses and

the latter type-agnostic analyses. Additionally, we investigate the information used by the

analysis and de�ne �ve levels of uncertainty awareness.

Although the four presented approaches di�er regarding the level of uncertainty awareness,

they share the representation of uncertainty in the form of scenarios. A scenario represents

one possible outcome of uncertainty, e.g., whether your data �ows across a country border.

The uncertainty-aware analysis considers these scenarios in analyzing con�dentiality and

162

7.9. In Simpler Words

returns only those scenarios that violate con�dentiality. This helps software architects

to better assess whether or not an uncertainty is critical and should be mitigated. Some

approaches �nd such critical scenarios by checking all possible variations of the software

architecture. Other approaches use the available information in a more clever way and

can exclude irrelevant scenarios early in the analysis.

The most advanced approaches center their analysis algorithm around uncertainty. They

treat uncertainty as a so-called �rst-class entity or �rst-class concern. This means that

uncertainty is of central importance and as important as every other element of the

software architecture. We �nd that considering uncertainty in this way helps to provide

more and better information to the software architects. Additionally, the analysis scales

better for large software systems from the real world. We also implemented such an

analysis and provided it together with this thesis. This represents the �nal contribution of

this thesis and also concludes the procedure that has been introduced in Chapter 4.

163

Part III.

Validation

8. Evaluation Scenarios

In this chapter, we present the scenarios used in the evaluation of this thesis. We do

not perform case studies as we do not study the use of our contributions in a real-life

environment, e.g., by watching software architects or security experts [276]. We use the

term evaluation scenario instead as we only investigate the intended use of our contributions

based on real-world systems, similar to related work [212, 264]. Nevertheless, using case

study systems in the evaluation of contributions in the software architecture community

is common [46, 233, 264]. Konersmann et al. [142] conducted a Systematic Literature

Review (SLR) with 153 papers and found that using case study systems represents the

most common evaluation method in recent software architecture research.

In this thesis, every evaluation scenario is based on or related to a real software system

that has been speci�ed by others. Thus, we start each scenario with a description of its

source, where it is used, and how the architectural models have been created. Afterward,

we describe the software system of each scenario, which includes the software architecture

and its intended use. Every scenario handles con�dential data and thus has con�dentiality

requirements that can be speci�ed as data �ow constraints. Last, a real-world software

system is subject to uncertainty. We discuss uncertainty sources and their potential impact

on con�dentiality based on existing collections [103, 104, 202].

This chapter introduces six evaluation scenarios. The �rst three, namely the TravelPlanner,
DistanceTracker, and OnlineShop scenarios have been used in the evaluation of related

approaches [147, 151, 233, 234, 236, 264, 265, 267, 269, 270]. The second three, namely the

CoronaWarnApp, MobilityAsAService, and JPlag, represent software systems from academia

[152, 199, 213, 215, 216, 217] and industry [69, 119]. In the following, we give an overview

of the evaluation scenarios and then introduce them in more detail. See the data set [98]

for all data �ow constraints and Palladio Component Model (PCM) instances.

� Literature: This chapter is based on the following (co-) authored publications:

[ECSA-C 2021], [IEEE SEAA 2022], [Springer ECSA 2022], [IEEE ICSA-C 2023],

[Springer ICETE 2023], [IEEE/ACM SEAMS 2023], [Springer ECSA 2024],

[ACM/IEEE MODELS-C 2024]

8.1. Overview

For the evaluation of this thesis, we use software systems and scenarios of di�erent size

and from di�erent domains. Table 8.1 shows an overview of the six evaluation scenarios,

167

8. Evaluation Scenarios

Name Domain Origin Used in

TravelPlanner Mobility [133, 135] [37, 101, 105, 147, 231, 233,

234, 236, 264, 265, 266, 267,

269]

DistanceTracker Health / Sports [133] [37, 101, 105, 233, 234, 236,

266]

OnlineShop E-Commerce [203, 234] [36, 97, 100, 101, 102, 103,

104, 151, 266, 270]

CoronaWarnApp Health [69, 119] [102, 104, 106]

MobilityAsAService Mobility [152] -

JPlag Plagiarism Detection [199, 216] -

Table 8.1.: Overview of all evaluation scenarios, their domain, their origin, and their usage.

Name #
C

o
m

p
o
n
en

t

#
S
E
F
F

#
T

F
G

#
V
ert

ex

#
U

n
ce

rt
a
in

ty

#
V

io
la

ti
o
n

TravelPlanner 7 9 2 42 1 1

DistanceTracker 8 10 1 29 1 1

OnlineShop 2 6 3 44 4 24

CoronaWarnApp 21 58 14 687 9 163

MobilityAsAService 18 49 8 200 5 6

JPlag 3 5 3 65 4 26

Table 8.2.: Size metrics, uncertainty sources, and con�dentiality violations of all evaluation scenarios.

their origin, and other evaluations where they have already been used. To encounter

threats to external validity and to increase generalizability, we use scenarios from di�erent

domains, e.g., from the mobility or health domain. All evaluation scenarios originate from

other work. The majority have been used in the evaluation of other publications. Only

the last two scenarios, MobilityAsAService a service and JPlag are new. However, they

represent well-evaluated systems with high demands on the systems’ con�dentiality and

are thus suitable as evaluation scenarios for this thesis.

For the contributions of this thesis (C1, C2, andC3), a central property of a software system

is the form and size of the system’s Data Flow Diagram (DFD) and the scenario’s uncertainty

sources, as discussed in Section 5.5 and Section 7.5. Table 8.2 lists all relevant size-related

metrics of the six evaluation scenarios. This includes the number of the components

and Service E�ect Speci�cations (SEFFs) of the PCM instance of each scenario, as these

numbers impact the number of DFD nodes. We also show the number of Transpose Flow

Graphs (TFGs) and their vertices, because these sizes are relevant both for the uncertainty

impact analysis (C2) and for the di�erent approaches to uncertainty-aware data �ow

analysis (C3). Last, we show the number of uncertainty sources in the evaluation scenarios

and the number of potential con�dentiality violations due to these uncertainties.

168

8.2. TravelPlanner

Mobile Phone

Airline Server

Agency Server

Airline

Travel Planner

Credit Card Center

Agency

Figure 8.1.: Simpli�ed component and deployment diagram of the TravelPlanner evaluation scenario.

The scenarios show di�erent sizes and numbers of uncertainties and violations. The

TravelPlanner and the DistanceTracker represent smaller scenarios with one uncertainty

source each, and 7 and 8 components, respectively. Still, their TFGs have a total of 42 and

29 vertices, which highlights again the need for automated analysis approaches and tool

support, discussed in Section 4.3. MobilityAsAService and CoronaWarnApp are the largest

evaluation scenarios. They contain 5 and 9 uncertainty sources and a total of 200 and 687

TFG vertices that represent DFD nodes.

8.2. TravelPlanner

Source The TravelPlanner evaluation scenario originates from the iFlow project by

Katkalov [133]. It originally has been used in the evaluation of information �ow analysis

[135]. A comprehensive description of the software architecture and a Java-based imple-

mentation are available [134]. The PCM model used in this evaluation scenario stems from

related work [233, 264] and has been used in many case study-based validations [37, 101,

105, 147, 231, 234, 236, 265, 266, 267, 269].

Description Figure 8.1 shows a simpli�ed diagram of the software architecture. Here—

and also in all following �gures of this chapter—we show simpli�ed diagrams to give an

overview and to increase clarity. As shown in Table 8.2, the PCM model consists of more

components than illustrated. We do also not depict uncertainty sources in this diagram.

We refer to the data set [98] for the complete architectural model, which includes data

�ow constraints and uncertainty models. The corresponding PCM model consists of 7

components with 9 SEFFs and maps to 2 TFGs with 42 vertices.

This evaluation scenario comprises three central entities: A customer, a travel agency,

and an airline. The customer uses the Travel Planner app to search for �ights. This

app communicates with a travel Agency that queries �ights from multiple Airlines. The

aggregated results are returned to the customer. Afterward, the customer selects and

books a �ight using a credit card. The software architecture comprises three deployment

locations that match the three entities. The customer operates the Mobile Phone, where

169

8. Evaluation Scenarios

Mobile Phone Tracking Service Server

Distance Tracker

GPS Service

Tracking Service

Figure 8.2.: Simpli�ed component and deployment diagram of the DistanceTracker evaluation scenario.

the Travel Planner app and the Credit Card Center app is located. Both the Agency and the

Airline operate their own servers and provide interfaces to the other components.

Confidentiality requirements In this evaluation scenario, we consider two di�erent data

types. On the one hand, the �ight data represents public information without any data �ow

constraints. On the other hand, credit card data represents highly sensitive information

with strict con�dentiality requirements. This information is managed by the Credit Card
Center and shall only leave the Mobile Phone in the booking process upon explicit approval

by the customer. Additionally, the credit card data shall only �ow directly to the Airline in

the booking process—it shall never �ow to the Agency.

Uncertainty sources We use this evaluation scenario as a minimal scenario for primary
uncertainty. We add the Behavior uncertainty that credit card data can be used with or

without user consent [101]. Here, passing the data to the Airline servers without consent

represents a violation of the aforementioned con�dentiality requirements.

8.3. DistanceTracker

Source The DistanceTracker evaluation scenario also originates from the iFlow project

by Katkalov [133]. Similarly to the TravelPlanner scenario described above, it has been

used in many case study-based validations [37, 101, 105, 233, 234, 236, 266].

Description Figure 8.2 shows a simpli�ed diagram of the software architecture. As

discussed above, we simplify the system structure and do not depict uncertainty sources

to increase clarity and refer to the data set [98]. The corresponding PCM model consists

of 8 components with 10 SEFFs and maps to 1 TFG with 29 vertices.

The evaluation scenario comprises three central entities: The user, the Distance Tracker
app, and the online Tracking Service. The user shares the GPS location with the tracking

app that periodically tracks the current location and calculates the distance run. This

distance is transmitted to the Tracking Service. The software architecture comprises two

170

8.4. OnlineShop

On Premise Server Cloud Service

Online Shop Database Service

Figure 8.3.: Simpli�ed component and deployment diagram of the OnlineShop evaluation scenario.

deployment locations. The user operates the Mobile Phone that hosts the Distance Tracker
app and a GPS service. The Tracking Service is deployed on a separate server.

Confidentiality requirements The con�dentiality requirement of this evaluation scenario

considers the con�dentiality of GPS data, i.e., precise information about the user’s current

location. This information is only allowed to be used locally on the Mobile Phone. Only in

aggregated form, e.g., as calculated distance, this information is allowed to be passed to

the Tracking Service. Thus, there shall be no �ow of explicit GPS locations from the Mobile
Phone to any other location.

Uncertainty sources We use this evaluation scenario as a minimal scenario for secondary
uncertainty. We add the Connector uncertainty that GPS data can be processed on the

Tracking Service Server [101] for additional statistics and a persisted history of runs. Passing

the GPS data to the Tracking Service for this purpose is a con�dentiality violation.

8.4. OnlineShop

Source The OnlineShop evaluation scenario is based on CoCoME [203] and has been

adapted for architecture-based con�dentiality analysis [234]. It has also been used in case

study-based validations [36, 97, 100, 101, 102, 103, 104, 151, 266, 270]. We refer to this

evaluation scenario throughout this thesis as the running example
1
, see Chapter 3.

Description Figure 8.3 shows a simpli�ed diagram of the software architecture. A com-

prehensive diagram of the software system is shown in Figure 3.1, and the architectural

model is part of the data set [98]. The corresponding PCM model consists of 2 components

with 6 SEFFs and maps to 3 TFGs with 44 vertices.

The evaluation scenario comprises three central entities: The customer, the Online Shop,

and the shop’s Database Service. We consider three usage scenarios: The user can query

available items, purchase items, and request a support contact. The former two scenarios

1
Although using an evaluation scenario as the running example represents a threat to validity, we argue

that this threat is weakened by using other evaluation scenarios in addition. Furthermore, the increased

understanding arising from such thorough investigation can bene�t the evaluation.

171

8. Evaluation Scenarios

Laboratory

Cloud Service

CWA Server

Verification

DatabaseDashboard

Test Result Server

Mobile Phone

Corona Warn App

Exposure Notification

Figure 8.4.: Simpli�ed component and deployment diagram of the CoronaWarnApp evaluation scenario.

include calls of the Online Shop to the Database Service, the latter only yields static infor-

mation. The software architecture comprises two deployment locations. The Online Shop
is deployed On Premise while the Database Service is deployed to a Cloud Service. We refer

to Chapter 3 for a more detailed description of the software system.

Confidentiality requirements In this evaluation scenario, we consider two di�erent data

types. The public information of the online shop, like available items, and the user’s

private purchase details. While the former is publicly available and not sensitive, the latter

is highly sensitive, comparable to the credit card details of the TravelPlanner evaluation

scenario. The user input in the purchase process shall be validated and encrypted before

�owing into the database. Additionally, depending on the deployment location and the

trustworthiness of the resource provider, con�dentiality can be threatened. We provide

more details on the con�dentiality requirements in Chapter 3.

Uncertainty sources We de�ne four uncertainty sources in this evaluation scenario, as

described in Section 3.2. Uncertainty U1 a�ects the user input that can be valid, erroneous,

or malicious. Uncertainty U2 a�ects the data processing in the Online Shop component that

can validate or encrypt the data. Uncertainty U3 a�ects the deployment of the Database
Service component that can be on-premise or in the cloud. Uncertainty U4 a�ects the

trustworthiness of the provider of the Cloud Service that can be trustworthy or suspicious.

All uncertainty sources and their scenarios are shown in Table 7.2.

8.5. CoronaWarnApp

Source The CoronaWarnApp evaluation scenario is based on the German Contact Tracing

App of the same name [119]. During the COVID-19 pandemic, this app was used to warn

users who may have come into contact with people who had tested positive on COVID-19.

The app was developed by SAP and Deutsche Telekom [69], published by the Robert

Koch Institute, and downloaded more than 20 million times [119]. All source code and

documentation are available open-source on GitHub [222], including a detailed description

of the software architecture. We used the publicly available information to create a PCM

model that was already used in multiple validations [102, 104, 106].

172

8.6. MobilityAsAService

Description Figure 8.4 shows a simpli�ed diagram of the software architecture. Due to

the size of the evaluation scenario, we leave out many details in this diagram, e.g., the

collection of statistics, or the international exchange of positive test results. The PCM

component repository model is shown in Appendix D. The corresponding PCM model

consists of 21 components with 58 SEFFs and maps to 14 TFGs with 687 vertices.

The evaluation scenario comprises �ve central entities. The user of the app, the server

infrastructure, laboratories, support hotlines, and international partners. Users can vol-

untarily enter if they are infected to warn others and they also get warned in the case

of a potential contact. The warning mechanism uses keys that are exchanged between

mobile phones via Bluetooth [222]. If users are tested, they can enter the test via a code

or with the help of the support hotline. The laboratories add the test results, and the

server infrastructure manages both. Additionally, the keys of positive tested users can be

shared with international partner servers in the EU and Switzerland. The components

of the server infrastructure, e.g., the Veri�cation, or the Test Result Server, are deployed

to the Cloud Service of the Open Telekom Cloud. Laboratories operate their own Dash-
boards and laboratory information systems that connect to the server infrastructure. Users

have the Corona Warn App installed on their phones that communicate with the Exposure
Noti�cation framework. This framework manages the key exchange and comparison.

Confidentiality requirements The Corona Warn App manages sensitive information re-

lated to health data and location data. Contact tracing apps are challenged with many risks,

e.g., regarding de-anonymization or pro�ling [20]. We express multiple con�dentiality

requirements as data �ow constraints [36, 105]. First, users should not be able to directly

access the exchanged keys but only be warned if an exchanged key matches a key of a

person who tested positive. Additionally, all keys and other credentials are considered

to be sensitive information. Here, the Veri�cation component plays a central role in the

validation. The Corona Warn App collects statistical data that shall only be shared in

aggregated form. Last, we reuse the already discussed requirements regarding secure

storage, information leaks, and logging. The full list of requirements is in data set [98].

Uncertainty sources Due to the size of this evaluation scenario, we model 4 sub-scenarios

with 2 to 3 uncertainty sources each, which adds up to a total of 9 uncertainty sources.

In this �rst sub-scenario, we consider the processing of data and the interception of the

communication regarding a central component in the Cloud Service. The second sub-

scenario focuses on deployment and secure storage of test results using the Test Result
Server. The third sub-scenario evolves around logging and validation in the Veri�cation
component. In the fourth sub-scenario, we focus on critical points within the system with

a potentially wide impact, e.g., the Database and the Exposure Noti�cation framework. All

details about the uncertainty sources and scenarios can be found in the data set [98].

173

8. Evaluation Scenarios

Ticket System Node

Trusted Execution Environment

Mobility Provider ServerCustomer DeviceInspector Device

Atomic Broadcast MiddlewareTicket System Database

Provider System InterfaceExternal System Interface

Customer Inspection Services Customer Services Customer Database

Provider Services

Figure 8.5.: Simpli�ed component and deployment diagram of the MobilityAsAService evaluation scenario.

8.6. MobilityAsAService

Source The MobilityAsAService evaluation scenario is based on a concept for a distributed

ticketing system of the same name [152]. It uses Distributed Ledger Technology (DLT) with

Trusted Execution Environments (TEEs) to de�ne a secure system with distributed gover-

nance that is scalable while ensuring con�dentiality. We used the available documentation

to create a PCM model that approximates the proposed concept.

Description Figure 8.5 shows a simpli�ed diagram of the software architecture. As we use

the ADL PCM to model the scenario, we can only approximate the actual behavior of a DLT,

or a TEE. Additionally, we only model one mobility provider, while the underlying concept

allows for many operators with decentralized governance. The corresponding PCM model

consists of 18 components with 49 SEFFs and maps to 8 TFGs with 200 vertices.

The evaluation scenario comprises four central entities. The ticket system encapsulates

a TEE that manages a replicated state machine and middleware to broadcast requests.

We illustrate this with the Ticket System Database and the Atomic Broadcast Middleware
components. The system can receive input from the three other entities: Inspectors,

customers, and mobility providers. Each node provides an External System Interface for the

former two and a Provider System Interface for the latter. Customers can register, check-in,

check-out, and see their trip history through several components that we bundled as

Customer Services. Inspectors can inspect customers using the Customer Inspection Services,
i.e., check the current state of the customer. Mobility Providers have tools for billing,

clearance, and analysis as part of the Provider Services. Additionally, they store contact

and billing information of their customers in a separate Customer Database. We combined

some of the aforementioned services, e.g., the Customer Services, for the sake of clarity, the

full model is part of the data set [98].

174

8.7. JPlag

Client System Cloud Service

Report Viewer

Plagiarsm Detector

Version Service

Figure 8.6.: Simpli�ed component and deployment diagram of the JPlag evaluation scenario.

Confidentiality requirements Leinweber et al. [152] name several con�dentiality require-

ments of the MobilityAsAService system. They require that only authorized entities are

able to access the data of the ticket system. Additionally, providers’ business secrets and

customer data shall not be leaked during the replication process. Details about individual

trips shall not be revealed to providers who only see the total invoice value. The system is

designed to provide all entities with the minimal information required for their tasks.

Uncertainty sources We use this evaluation scenario to combine all �ve types of uncer-

tainty sources de�ned in Table 5.2. We add an External uncertainty to a sta� member

who uses the Provider Services regarding the member’s role and authorization. We add

a Behavior uncertainty to the Ticket System Database regarding the granularity of the

retrieved data. We add a Interface uncertainty to the trip history service that is part of

the Customer Services, and a Connector uncertainty to the customer registration that is

part of the Customer Services, both regarding the sensitivity of the retrieved data. Last, we

add a Component uncertainty to the Provider Services representing a malicious mobility

provider [152]. All uncertainty sources re�ect changes to the MobilityAsAService concept

that would violate con�dentiality.

8.7. JPlag

Source The JPlag evaluation scenario is based on the plagiarism detector of the same

name [199]. Plagiarism detectors compare models or code submissions of programming

tasks [217], e.g., in educational context [219], to �nd suspicious similarities, i.e., plagiarism

[216]. The JPlag project, started in 1996, represents one of the most widely-used plagiarism

detectors that is resilient against most obfuscation attempts [213, 214, 215, 216, 218, 225].

Since 2020, the software architecture of JPlag has been re-engineered. Based on the

available documentation of this open-source project [214], and by cooperating with the

current maintainers, we created a PCM model of the core functionality.

Description Figure 8.6 shows a simpli�ed diagram of the software architecture. The

Jplag software architecture is designed to enable the deployment of the main components,

175

8. Evaluation Scenarios

i.e., the Plagiarism Detector and the Report Viewer, on a client system, a local machine, or a

server, to simplify its integration into other products [214]. Nevertheless, we consider the

illustrated deployment to be the most common use case. The corresponding PCM model

consists of 3 components with 5 SEFFs and maps to 3 TFGs with 65 vertices.

The evaluation scenario comprises three entities: The Plagiarism Detector, a Report Viewer
for displaying analysis results, and a Version Service for update noti�cations. The Plagiarism
Detector receives a set of code or model submissions as input and compares them. This is

done internally without any communication to other services [214]. After the comparison,

all results are stored in an archive. This includes similarity scores between submissions,

clusters of similar submissions, or suspiciously similar parts of the submissions. Because

plagiarism detection needs human judgment [213, 216], the results are displayed in a

human-readable way using the Report Viewer. The software architecture supports the

direct communication between the Plagiarism Detector and the Report Viewer, but users

can also choose to manually load a result archive, e.g., to revisit older comparisons. The

Report Viewer is web-based but only operates within the web browser without the need for

additional server infrastructure [214]. Thus, all input remains on the users’ Client System.

As Jplag is subject to continuous development [214], both components communicate with

a Version Service to notify users about available updates.

Confidentiality requirements Plagiarism detectors like JPlag are designed for the educa-

tional context, e.g., programming tasks. Here, student data has to be treated as con�dential

due to administrative rules and laws like the General Data Protection Regulation (GDPR)

[73]. We interpret this requirement as data �ow constraint and restrict that all submissions

and all plagiarism detection results shall never leave the client system. Furthermore, the

authors of JPlag claim to never collect any usage data from running the software [214].

Thus, we additionally restrict the Version Service to not collect or evaluate any statistical

information on the versions in use.

Uncertainty sources We use this evaluation scenario to de�ne four uncertainty sources, of

which only two negatively a�ect the system’s con�dentiality. This allows for more precise

statements about potential false positives in the evaluation [198]. The �rst uncertainty

source considers the deployment of the Report Viewer on the Client System or in the cloud.

The second uncertainty source considers the usage of JPlag standalone or in conjunction

with the Report Viewer. As stated previously, neither uncertainty a�ects the con�dentiality

of the software architecture. The third uncertainty source targets the deployment of

the Plagiarism Detector, which could be deployed locally or in the cloud. This could

cause sensitive student data to �ow to another server, which violates con�dentiality—an

argument against closed-source plagiarism detection as a service [214, 216]. Last, we add

a fourth uncertainty concerning the data collection behavior of the Version Service. As

stated previously, evaluating usage data violates con�dentiality.

176

8.8. Summary and Outlook

8.8. Summary and Outlook

In this chapter, we presented six evaluation scenarios that will be used throughout the

evaluation of this thesis. All evaluation scenarios are based on or related to a case study

of a software system that handles con�dential data. The scenarios have di�erent sizes

that range from 2 to 21 components, and also have di�erent origins and domains. For

each evaluation scenario, we described its source, software architecture, con�dentiality

requirements, and uncertainty sources. All scenarios are modeled using the PCM.

The �rst scenario, the TravelPlanner, represents a smartphone app to search and book

�ights. The second scenario, the DistanceTracker, is a sports or health app that tracks the

distance run by a user. The third scenario, the OnlineShop, is an e-commerce application for

purchasing items online, introduced in Chapter 3. The fourth scenario, the CoronaWarnApp,

is a contact tracing app developed during the COVID-19 pandemic. The �fth scenario,

MobilityAsAService, is a distributed ticketing system based on DLT and TEEs. The sixth

scenario, JPlag, is a plagiarism detector, e.g., used for programming tasks in universities.

In sum, these scenarios provide a wide range of di�erent software systems. Despite their

di�erences in structure and size, they all have to ensure the con�dentiality of the processed

data. Furthermore, they are all subject to uncertainty. We use these scenarios throughout

Chapter 9: Evaluation. For more details on the third scenario, the OnlineShop, see

Chapter 3: Running Example. For a more detailed view of the components of the

fourth scenario, the CoronaWarnApp, see Appendix D. Last, we again refer to our data set

[98] for all uncertainty and architectural models and all data �ow constraints.

8.9. In Simpler Words

In the last three chapters, we presented the contributions of this thesis. In our research

area, a contribution is an enhancement of the state of the art, e.g., a new or better algorithm,

a better way to collect and express knowledge, or a new method. To investigate the quality

of our contributions, we perform an evaluation. In the discipline of this thesis—software

architecture research—many evaluations are based on case studies. In this chapter, we

refer to evaluation scenarios comparable to case studies.

We present six di�erent evaluation scenarios of di�erent sizes and from di�erent domains.

Examples are the health domain, the mobility domain, and e-commerce. Many of our

evaluation scenarios have already been used to evaluate related approaches, e.g., the

TravelPlanner evaluation scenario. Other scenarios, e.g., the CoronaWarnApp evaluation

scenario, are newer but based on well-studied software systems from the real world. It is

important to cover di�erent sizes and domains because otherwise, one could say: “Your

contributions only work for small software systems” or “Your contributions only work for

systems in the mobility domain, but not for others”. By using various evaluation scenarios,

we counteract such—otherwise justi�ed—criticism. The following chapter will apply our

contributions to these evaluation scenarios.

177

9. Evaluation

In this chapter, we present the evaluation of this thesis. We choose the joint presentation

of the evaluation of all three contributions C1, C2, and C3 for increased cohesiveness and

clarity. The evaluation is based on the evaluation scenarios, introduced in Chapter 8.

Although all three contributions of this dissertation target con�dentiality with regard

to uncertainty, they di�er in their nature. For instance, Contribution C1 represents a

classi�cation, while Contribution C3 comprises meta models and analysis approaches.

Thus, we use di�erent evaluation methods such as user studies and the aforementioned

evaluation scenarios, which are comparable to case studies. This matches the �ndings

of Konersmann et al. [142], who conducted a Systematic Literature Review (SLR) with

153 papers on the evaluation methods in software architecture research. For our research

object—architecture analysis methods—case studies, motivating examples, and technical

experiments represent the most common evaluation methods [142]. In this case, the most

commonly investigated properties are e�ectiveness, functional suitability, and accuracy,

which match the presented evaluation. For most of the evaluation, we focus on the

presented analyses, not the presented meta models. Following the de�nition of Stachowiak

[245], every model has pragmatism, in our case, to serve the analysis. Thus, evaluating

the analysis indirectly also evaluates the underlying models [264].

The evaluation follows a comprehensive Goal Question Metric (GQM) approach [16, 17]. A

goal is on the conceptual level and describes a quality to evaluate, i.e., the aforementioned

properties to investigate. An evaluation can have multiple goals. A question is on the

operational level and describes how the quality is measured or assessed. Each goal can

have multiple questions. A metric is on the quantitative level and describes the data that is

associated with the question. Each question can have multiple metrics. A GQM plan helps

align quality, assessment, and data to minimize the risk of collecting meaningless results

[17]. It also helps to structure the evaluation and increases reproducibility. We number all

goals, questions, and metrics and use labels throughout this chapter.

The remainder of this chapter is structured as follows: We introduce the GQM plans for

evaluating all contributions C1 – C3. Then, we present the evaluation design and results

for each contribution separately. We individually discuss the results and threats to validity

according to Runeson and Höst [212]. Last, we give an summary of the evaluation.

� Literature: This chapter is based on the following (co-) authored publications:

[ECSA-C 2021], [IEEE SEAA 2022], [Springer ECSA 2022], [ACM EASE 2022],

[IEEE ICSA-C 2023], [Springer ICETE 2023], [IEEE/ACM SEAMS 2023],

[Springer ECSA 2024], [ACM/IEEE MODELS-C 2024]

179

9. Evaluation

9.1. Overview

We present the individual GQM plans of all three contributions. The �rst Contribution C1
concerns the classi�cation and identi�cation of uncertainty. We evaluate the structure’s

suitability, applicability, purpose, and usability. The second Contribution C2 focuses on

architecture-based uncertainty impact analysis using uncertainty propagation. We evaluate

the accuracy and e�ort reduction. The third Contribution C3 comprises four approaches

to uncertainty-aware data �ow analysis. We evaluate the accuracy and scalability.

In total, our GQM plans comprise 8 goals, 19 questions, and 32 metrics. In the following,

we show the tree of each evaluation goal and then discuss its questions and metrics.

9.1.1. Evaluation Plan for the First Contribution

The �rst Contribution C1 introduces a classi�cation of software-architectural uncertainty

regarding con�dentiality [104]. Additionally, it includes means to identify uncertainty

sources based on an interactive catalog approach [103]. This approach is tool-supported

by r ARC
3
N. The evaluation of this contribution comprises 4 goals, with a total of

12 questions and 16 metrics. The evaluation is closely aligned to the simultaneously

introduced evaluation method for classi�cations and taxonomies by Kaplan et al. [132].

Goal G1 Figure 9.1 shows the tree of the �rst goal. Following the aforementioned evalua-

tion method [132], this goal concerns the classi�cation structure’s suitability. This property

describes whether a classi�cation is suitable to classify the objects under study. In our

case, the objects under study are sources of uncertainty with respect to con�dentiality.

This can be seen as a baseline check as the classi�cation needs to have the right scope and

granularity to be suited. We also motivated the classi�cation in Chapter 5 with the lack of

suitable taxonomies. We consider three evaluation questions:

Q1.1 Has the classi�cation an appropriate level of generality and granularity?

Q1.2 Is the classi�cation appropriate, comprising only necessary classes?

Q1.3 Is the classi�cation orthogonal without overlapping classes?

The �rst Question Q1.1 asks about the generality, where we evaluate the granularity, i.e. if

the classi�cation is not too general but also not too speci�c. The right level of granularity

is important as a classi�cation group objects under study into classes—a too-low number of

classes reduces the usefulness of this information, while a high number too-high number

of classes introduces noise and makes the classi�cation results hard to understand. To

this end, the evaluation method reuses metrics used to evaluate conceptual models with

respect to tools [7, 132]. The laconicity (M1.1.1) measures the fraction of terms that are

uniquely describable. Given a classi�cation C, a �nite set of objects under study R, with

' ∈ R being an object under study with relevant terms A ∈ R, then<�
'
⊆ � × ' describes

the relation of classes 2 ∈ � to relevant terms A ∈ '. In our classi�cation, we use the term

180

9.1. Overview

G1: Validate the classi�cation structure’s suitability, whether it permits the appro-

priate classi�cation of objects under study with the right scope and granularity.

Q1.1: Has the classi�cation an appropriate level of generality and granularity?

M1.1.1: laconicity(�,R) =
∑
'∈R

∑
A ∈' laconic(�,',A)∑
'∈R |' | ∈ [0, 1]

M1.1.2: lucidity(�,R) =
∑
2∈� (min'∈R lucid(�,',2))

|� | ∈ [0, 1]

Q1.2: Is the classi�cation appropriate, comprising only necessary classes?

M1.2.1: completeness(�,R) =
∑
'∈R

∑
A ∈' complete(�,',A)∑

'∈R |' | ∈ [0, 1]

M1.2.2: soundness(�,R) =
∑
2∈� (max'∈R sound(�,',2))

|� | ∈ [0, 1]

Q1.3: Is the classi�cation orthogonal without overlapping classes?

M1.3.1: orthogonality(�,R) ∈ [0, 1], using an orthogonality matrix

Figure 9.1.: Overview of the GQM plan of the �rst goal regarding Contribution C1.

option to refer to classes, e.g., Behavior uncertainty and Scenario uncertainty are two of

the 27 options of our classi�cation. A class is laconic, if there is at most one 2 ∈ � with

(2, A) ∈<�
'

. Based on this, we denote:

laconicity(�,R) =
∑
'∈R

∑
A∈' laconic(�, ', A)∑

'∈R |' |
∈ [0, 1]

A low laconicity indicates a too �ne-grained classi�cation with potentially too many

classes to describe the object under study. Put simply, a concept of an object under study

should be only describable using a single class, otherwise the classi�cation structure’s

suitability could be decreased. For instance, if we have one object under study, one term

that represents Behavior uncertainty, and one class to describe it, this class is laconic,

thus laconicity(�,R) = 1

1
= 1.0. If we add �ve additional options to describe Behavior

uncertainty without need, this decreases the laconicity; in this case to zero, as
0

1
= 0.0

The lucidity (M1.1.2) measures the opposite, i.e., the fraction of classes that describe

exactly one term. A class is lucid, if there is at most one A ∈ ' with (2, A) ∈<�
'

:

181

9. Evaluation

lucidity(�,R) =
∑
2∈� (min'∈R lucid(�, ', 2))

|� | ∈ [0, 1]

A low lucidity indicates a too-coarse-grained classi�cation that could overestimate classes

and not distinguish enough. For instance, if we have �ve three classes, where two describe

only one term, e.g., Behavior and External uncertainty, but the third class does describes

both terms, then lucidity(�,R) = (1+1+0)
3

= 2

3
. Put simply, a class of classi�cation should

only describe a single concept of an object under study. A good trade-o� regarding

granularity is important because we want to be able to di�erentiate between uncertainties

without assigning a separate class to every instance. Also, the granularity must �t the

purpose of classifying software-architectural uncertainty regarding con�dentiality.

The second Question Q1.2 asks about the appropriateness, where we evaluate whether the

classi�cation has enough categories without having unnecessary categories. On the one

hand, we shall be able to classify every software-architectural uncertainty that can have

an impact on con�dentiality. On the other hand, categories and options that are never

used, should not be maintained. Similarly to the metrics used for Question Q1.1, we reuse

metrics from the evaluation of conceptual models [7, 132]. The completeness (M1.2.1)

measures the fraction of complete terms over all objects under study. Each term of all

objects under study should be covered by at least one class, otherwise the completeness is

reduced. A term is A ∈ ' is complete, if there is at least one 2 ∈ � with (2, A) ∈<�
'

:

completeness(�,R) =
∑
'∈R

∑
A∈' complete(�, ', A)∑

'∈R |' |
∈ [0, 1]

A low completeness indicates missing classes as not all important properties of all objects

under study can be described. Put simply, a classi�cation that cannot be used to describe

an object is not complete. For instance, if we remove the option of Behavior uncertainty we

cannot classify many uncertainty sources appropriately. The soundness (M1.2.2) measures

the fraction of sound classes in the classi�cation. Each class should be required to describe

at least one object under study, otherwise it is unnecessary can be removed. A class 2 ∈ �
is sound, if there is at least one A ∈ ' with (2, A) ∈<�

'
. We denote:

soundness(�,R) =
∑
2∈� (max'∈R sound(�, ', 2))

|� | ∈ [0, 1]

A low soundness indicates unnecessary classes as not all classes are required to describe

all objects under study. Put simply, a classi�cation with low soundness introduces noise

and complicates the classi�cation process. For instance, if we add an option called Color
uncertainty that describes the e�ect of the color of a button in the user interface on

con�dentiality, the soundness is reduced
1
.

1
Note that we do not state that there is no e�ect of the color of a button on con�dentiality, think of, for

instance, phishing attacks. However, the relevance for software-architectural uncertainty is negligible.

182

9.1. Overview

G2: Validate the classi�cation’s applicability, whether it is understandable, usable,

and yields consistent results when employed by di�erent users.

Q2.1: Does using the classi�cation produce consistent and thus reliable results?

M2.1.1: Relative size of the largest annotator consensus ∈ [0, 1]

Q2.2: Does using the classi�cation produce correct results?

M2.2.1: Correctness of annotators’ results, recall =)%
)%+�# ∈ [0, 1]

Q2.3: Is the classi�cation easy to use and easy to understand?

M2.3.1: System Usability Scale (SUS) ∈ [0, 100]

Figure 9.2.: Overview of the GQM plan of the second goal regarding Contribution C1.

The third Question Q1.3 asks about the orthogonality, where we evaluate whether the

classi�cation has overlapping categories. A lack of orthogonality implies that options

depend on each other and can be removed to increase preciseness. To measure orthogonality
(M1.3.1), we construct an orthogonality matrix. The classes of a classi�cation denote

both the columns and rows of a = × = matrix. A cell is �lled with a zero if two classes are

independent or a one if the class in the row implies the class in the column. The entries

on the main diagonal are not considered as the dependency relation between two classes

is irre�exive. The orthogonality is the fraction of |� |2 − |� | minus the number of cells

�lled with ones and the cell count. A low orthogonality, i.e., many dependencies between

classes, indicates unclear boundaries [22]. For instance, if Behavior uncertainty implicates

Scenario uncertainty, the orthogonality is decreased. Overall, a classi�cation with bad

structural quality yields ambiguous results and should be adapted.

Goal G2 Figure 9.2 shows the tree of the second goal that is also based on the aforemen-

tioned evaluation method [132]. We focus on the classi�cation’s applicability, i.e., whether

the classi�cation is understandable and usable, see Usable Security [223]. Kaplan et al.

[132] propose to conduct a user study. A classi�cation with suitable structural quality (G1)

can still be bad if does not yield consistent results results by di�erent users. Classi�cations

are meant to communicate. We consider three evaluation questions:

Q2.1 Does using the classi�cation produce consistent and thus reliable results?

Q2.2 Does using the classi�cation produce correct results?

Q2.3 Is the classi�cation easy to use and easy to understand?

183

9. Evaluation

The �rst Question Q2.1 asks about the reliability, where we evaluate whether di�erent

user’s results are consistent when applying the classi�cation. An ambiguous classi�cation

with inconsistent results indicates a lack of preciseness regarding classes, categories, or

their description. Here, we measure the relative size of the largest consensus (M2.1.1)

among all users of the classi�cation. A low consensus indicates a lack of comprehensibility

of class names, categories, and their descriptions. For instance, if three out of �ve users

classify an uncertainty as Behavior uncertainty, and the other two users classify it as

Component uncertainty, the largest consensus is three out of �ve.

The second Question Q2.2 asks about the correctness of the user’s results by applying the

classi�cation. This can be evaluated by comparing the individual results to a prede�ned

gold standard. As the comparison of users’ and experts’ results resembles a binary clas-

si�cation, we can apply the terminology of true positives (TP), false positives (FP), true

negatives (TN), and false negatives (FN) [198, 208]. We measure the true positive rate, i.e.,

the recall (M2.2.1), which is calculated as:

recall =
)%

)% + �#

A low recall indicates that users could not bene�t from applying the classi�cation. For

instance, if only one out of �ve users correctly identi�es an uncertainty source as Behavior
uncertainty, this indicates a lack of understandability of this option.

The third Question Q2.3 asks about the ease of use of the classi�cation. Besides the

objective measures of concise and correct classi�cation results, this question focuses

on the perceived quality, which is subjective. Kaplan et al. [132] recommend using a

standardized questionnaire, e.g., the System Usability Scale (SUS) [153] (M2.3.1). This

questionnaire comprises ten questions regarding the usability, perceived complexity, and

ease of use. Each question can be answered on a scale from 1 to 5, which is the base to

calculate a score between 0 and 100 [153]. A low score indicates a lack of usability or

understandability that can be addressed, e.g., by increasing the consistency of naming

classes or by improving textual descriptions. Additionally, participants can be asked if

they understand the categories and �nd them helpful and whether they experienced a

knowledge gain by participating in the user study. Overall, a classi�cation has to yield

consistent and correct results without requiring too much e�ort in order to be usable.

Goal G3 Figure 9.3 shows the tree of the third goal. Like the previous goals, this goal

follows the evaluation method for taxonomies [132]. This goal considers the classi�ca-

tion’s purpose, i.e., its relevance and improvement compared to the state of the art
2
. A

classi�cation with a suitable structure (G1) and applicability (G2) could still lack novelty.

Then, reusing existing classi�cations is preferred [132]. We consider three questions:

2
One could question whether purpose is a property that can be quantitatively evaluated or whether it is

better to argue when discussing related work. We agree with this point of view. Nevertheless, we use the

term purpose in this evaluation to remain consistent with the evaluation method of Kaplan et al. [132].

184

9.1. Overview

G3: Validate the classi�cation’s purpose, i.e., the classi�cation’s quality and rele-

vance in comparison to existing classi�cations and taxonomies.

Q3.1: Is the classi�cation relevant, comprising only necessary categories?

M3.1.1: Fraction of relevant classes and categories

Q3.2: Is the classi�cation novel, having the right degree of new categories?

M3.2.1: innovation(�,T) =
∑
2∈� min) ∈T =4F (�,) ,2)

|� | ∈ [0, 1]

M3.2.2: adaptation(�,T) =
∑
2∈� max) ∈T 030?C43 (�,) ,2)

|� | ∈ [0, 1]

Q3.3: Is the classi�cation signi�cant, enabling a more precise description?

M3.3.1: classi�cationDelta(�,T ,R) = |∼� |−(max) ∈T |∼) |)
|R | ∈ [−1, 1]

Figure 9.3.: Overview of the GQM plan of the third goal regarding Contribution C1.

Q3.1 Is the classi�cation relevant, comprising only necessary categories?

Q3.2 Is the classi�cation novel, having the right degree of new categories?

Q3.3 Is the classi�cation signi�cant, enabling a more precise description?

The �rst question Q3.1 asks about the relevance of the classi�cation, where we evaluate

whether each category helps the purpose of the classi�cation. In our case, the purpose is

to understand the impact of uncertainty sources on con�dentiality. Here, we question the

relevance of all classes 2 ∈ � and also of all categories. We measure the relevance (M3.1.1)

as fraction of relevant classes and categories. Note that this metric is not similar to the

comparison of classes and terms of Goal G1 but considers the relevance of classes and

categories as means to an end. A low relevance indicates that the classi�cation contains

irrelevant elements that should be removed.

The second question Q3.2 asks about the novelty of the classi�cation compared to previous

classi�cations and taxonomies, i.e., the state of the art. While a research increment should

contain some degree of novelty, it should also refer to existing concepts to increase validity.

Thus, we measure both how many classes and categories are new and also how many of

them are adapted. The trade-o� between both measures depends on the purpose, e.g., a

classi�cation that combines existing classi�cations has a lower fraction of novel classes

and categories. To this end, we measure innovation (M3.2.1) and adaption (M3.2.2). Given

a classi�cation C with classes and categories 2 ∈ � , a �nite set of previous classi�cations

185

9. Evaluation

) ∈ T with classes and categories 3 ∈) , where ' ⊆ � ×) denotes that a class or category

is adapted. Then, a class or category is new if 2 ≠ 3 and 2 ; 3 for all 3 ∈) . Otherwise, a

class or category 2 ∈ � is adapted if 2 ' 3 for any 3 ∈) . Based on this, we denote:

innovation(�,T) =
∑
2∈� min)∈T =4F (�,) , 2)

|� | ∈ [0, 1]

A low innovation indicates a small di�erence compared to state of the art. However,

this has to be interpreted with regard to the purpose of the classi�cation, as discussed

above. Thus, there is no best value. Nevertheless, measuring the innovation and providing

arguments for the measured value helps clarify the classi�cation’s purpose. Extreme values

close to zero or one are the most di�cult to justify here. For instance, just copying an

existing taxonomy would yield an innovation of zero. Additionally, we denote:

adaptation(�,T) =
∑
2∈� max)∈T 030?C43 (�,) , 2)

|� | ∈ [0, 1]

A low adaptation indicates a large di�erence compared to the state of the art. Similarly

to the innovation, this can be desirable. Nevertheless, building on the state of the art

may increase the validity. For instance, a previous taxonomy of uncertainty [195] also

referred to existing classi�cations. Both metrics indicate the strength of the relation of the

classi�cation to other taxonomies.

The third question Q3.3 asks about the signi�cance, where we evaluate whether the

classi�cation enables a more precise description of the objects under study with respect to

its purpose. Put simply, as our classi�cation is aimed towards describing uncertainty with

respect to con�dentiality, it should enable a more precise description in this area than the

state of the art. Given a classi�cation � , a �nite set of previous classi�cations) ∈ T , and

a �nite set of objects under study R, ∼) denotes that a pair of objects under study are

classi�ed identically with respect to the classi�cation) , forming an equivalence class. We

measure the classi�cationDelta (M3.3.1), that describes whether or not a classi�cation is

able to yield more and smaller equivalence class than the most precise existing classi�cation,

which indicates a higher precision. We denote:

classi�cationDelta(�,T ,R) = |∼� | − (max)∈T |∼) |)
|R | ∈ [−1, 1]

A negative delta indicates that an already existing classi�cation is more precise and could

be used instead. A positive delta indicates an increase in preciseness, which is what we

aim for. For instance, if we provide three relevant options to describe uncertainty sources

where other taxonomies only provide one, the delta can be increased. However, only

optimizing for the classi�cation delta impairs other metrics, e.g., regarding the structure’s

suitability (G1), and applicability (G2). Thus, a good trade-o� with respect to the purpose

of the classi�cation has to be achieved. If the classi�cation fails the evaluation of purpose,

it represents no signi�cant improvement over the state of the art.

186

9.1. Overview

G4: Validate the catalog approach’s usability in identifying and understanding

uncertainty sources in software architectures.

Q4.1: Does the catalog support identifying and describing uncertainty sources?

M4.1.1: Percentage of correct answers ∈ [0, 1]

Q4.2: Does the catalog support collaboration and discussion?

M4.2.1: Percentage of correct answers ∈ [0, 1]

Q4.3: Is the catalog easy to use and provides a good user experience?

M4.3.1: System Usability Scale (SUS) ∈ [0, 100]

M4.3.2: Average usefulness and intuitiveness rating ∈ [1, 4]

Figure 9.4.: Overview of the GQM plan of the fourth goal regarding Contribution C1.

Goal G4 Figure 9.4 shows the tree of the fourth goal. This goal aims towards the uncer-

tainty source catalog, which is realized with r ARC
3
N. We evaluate the usability of the

catalog approach regarding identifying and understanding uncertainty sources. These are

also the desired qualities of the approach, described in Chapter 5. To this end, a user study

is the preferred evaluation approach. We consider three evaluation questions:

Q4.1 Does the catalog support identifying and describing uncertainty sources?

Q4.2 Does the catalog support collaboration and discussion?

Q4.3 Is the catalog easy to use and provides a good user experience?

The �rst Question Q4.1 asks about identifying uncertainty and whether the catalog helps

in identifying and describing uncertainty sources. This question is central as the catalog

addresses the Uncertainty Awareness Problem (UAP), i.e., the problem of identifying

uncertainty sources [103]. We measure the correctness (M4.1.1) as percentage of correct

answers. Based on a gold standard of previously introduced uncertainty sources, we rate

each answer as either correct or incorrect. A low correctness indicates that the catalog does

not su�ciently support the identi�cation of unknown uncertainty sources. For instance, if

four out of �ve uncertainty sources in an architectural model were identi�ed correctly, a

high correctness is achieved.

The second Question Q4.2 asks about the collaboration aspect of the catalog, where we

evaluate whether users are able to retrieve information from online discussions about

187

9. Evaluation

uncertainty sources. Besides supporting the identi�cation process, the catalog has a

collaborative aspect by providing the means to share knowledge about uncertainty between

software architects and institutions, see Section 5.7. We measure the correctness (M4.2.1)

as percentage of correct answers. This approach is the same as in answering the previous

Question Q4.1. A low correctness indicates that the catalog does not su�ciently support

collaboration between users. For instance, if only one out of �ve users refers to additional

material like online discussions, the catalog falls short of promoting collaboration.

The third QuestionQ4.3 asks about the ease of use and the user experience using the catalog

and its tool support r ARC
3
N. This question is similar to Q2.3 of evaluating the ease of use

of the classi�cation. Furthermore, this enables the comparison of the results regarding the

usability of the classi�cation and the catalog approach. We measure the users’ satisfaction

using the System Usability Scale (SUS) [153] (M4.3.1). This questionnaire comprises ten

questions and yields a score between 0 and 100, as discussed with Question Q2.3. A

low score indicates improvement potential regarding the user experience of the catalog

and its realization. Additionally, we measure the usefulness and intuitiveness (M4.3.2).

We ask about the perceived quality of di�erent aspects of the catalog, like examples, or

explanations with respect to the underlying classi�cation [104] on a scale from 1 to 4. We

average the individual results for each question separately. A low score helps to identify

aspects or features of the catalog approach that do not help in identifying uncertainty

sources. This complements the SUS and enables us to derive more precise �ndings on

the catalog approach. For instance, outliers can be used to improve the catalog by either

enhancing or removing the aspect or feature. In sum, this goal comprises both objective

and subjective measures to evaluate the catalog’s usability.

9.1.2. Evaluation Plan for the Second Contribution

The second Contribution C2 introduces an architecture-based uncertainty impact analysis

regarding con�dentiality [102]. The architectural propagation of uncertainty is related to

change impact analysis [46, 210, 211]. This approach is tool-supported by r UIA. The

evaluation of this contribution comprises 2 goals, with a total of 2 questions and 5 metrics.

The evaluation is closely aligned with the evaluation of change impact analysis [210].

Goal G5 Figure 9.5 shows the tree of the �fth goal. This goal focuses on the accuracy of

the uncertainty impact analysis. This analysis yields an impact set that represents an over-

estimation of the potential impact of uncertainty on con�dentiality, see Chapter 6. Thus,

the central quality is to provide an accurate impact set that predicts potential con�den-

tiality violations with only little overestimation [33]. An impact analysis that extensively

overestimates the impact is bad—however, an impact analysis that underestimates the

impact is worse [102]. We consider one central evaluation question:

Q5.1 How precise and complete is the result compared to manual analysis?

188

9.1. Overview

G5: Validate the accuracy of the impact set that represents the result of uncertainty

impact analysis, i.e., the quality of the prediction of con�dentiality violations.

Q5.1: How precise and complete is the result compared to manual analysis?

M5.1.1: precision =)%
)%+�% ∈ [0, 1]

M5.1.2: recall =)%
)%+�# ∈ [0, 1]

M5.1.3: �1 = 2 · precision·recall

precision+recall
∈ [0, 1]

Figure 9.5.: Overview of the GQM plan of the �fth goal regarding Contribution C2.

The Question Q5.1 asks about the precision and completeness of the impact set as the result

of the uncertainty impact analysis. We compare this result to con�dentiality violations

identi�ed by architecture-based con�dentiality analysis [36, 236]. We use the common

terminology [210] introduced in Section 6.3 and call the actual impact set, the set of

elements that are a�ected by uncertainty and would violate con�dentiality in a manual

con�dentiality analysis. We consider the actual impact set to be the ideal result. The

uncertainty impact analysis yields an impact set of uncertainty, i.e., the set of elements

that are potentially a�ected. Similarly to Q2.2, the comparison of these sets enables the

application of the terminology known from binary classi�cation, i.e., true positives (TP),

false positives (FP), true negatives (TN), and false negatives (FN) [198, 208]. An element of

the impact set represents a true positive (TP) if it violates con�dentiality and is thus also

in the actual impact set. If the element is only in the impact set, it is a false positive (FP).

If an element of the actual impact set is not found by our analysis, it represents a false

negative (FN). We use this terminology in the three metrics used to answer Question Q5.1.

First, we measure the precision (M5.1.1), which is calculated as:

precision =
)%

)% + �%

A low precision indicates a large overestimation. This makes the interpretation of the

impact set more di�cult as software architects have to manually �lter our potential false

positives. In the worst case, a lack of precision can lead to an unusable impact set. For

instance, if a con�dentiality violation occurs in a database component but the full software

system is part of the impact set, this renders the result ine�ective. Second, we measure

the recall (M5.1.2), which is calculated as:

recall =
)%

)% + �#

189

9. Evaluation

G6: Validate the e�ort reduction of the uncertainty impact analysis, i.e., how many

DFD nodes have to be manually considered by software architects.

Q6.1: How large is the e�ort reduction compared to manual analysis?

M6.1.1: Ratio of the actual impact set, A0C8>02CD0; =
)%+�#

=
∈ [0, 1]

M6.1.2: Ratio of the uncertainty impact set, A0C8>8<?02C =
)%+�%
=
∈ [0, 1]

Figure 9.6.: Overview of the GQM plan of the sixth goal regarding Contribution C2.

A low recall indicates that the impact set misses elements from the actual impact set, i.e.,

underestimates potential con�dentiality violations. As discussed previously, we prefer a

lower precision in order to maximize the recall, as the impact analysis only represents

an early estimation of the potential impact. After inspecting the impact set, software

architects can identify con�dentiality violations due to uncertainty using uncertainty-

aware data �ow analysis, see the procedure descried in Section 4.1. For instance, if the

impact set overestimates the impact in a critical system part, further analysis steps might

be required. Third, we measure the F1 score (M5.1.3), which is calculated as:

�1 = 2 · precision · recall

precision + recall

∈ [0, 1]

The F1 score is the harmonic mean of precision and recall and serves as indicator on the

overall accuracy. For all metrics, 0 represents the worst, and 1 is the best possible value.

Put simply, this goal validates the accuracy by comparing the prediction of con�dentiality

violations to actual existing con�dentiality violations.

Goal G6 Figure 9.6 shows the tree of the sixth goal. This goal considers the e�ort reduction
of the uncertainty impact analysis. The impact analysis serves software architects to

initially understand the impact of uncertainty to plan further analysis and mitigation

steps, see Section 4.1. Especially in large software systems, manual analysis is bothersome

and erroneous [234]. Thus, an impact analysis should reduce the e�ort of, in the worst

case, manually inspecting every element of the software architecture. This approach to

evaluating e�ort reduction stems from the evaluation of change impact analysis [46, 210]

and also has been used for other propagation-based analyses in software architecture [106,

266]. As we focus on con�dentiality and data �ow-based analysis, we refer to every node

of a Data Flow Diagram (DFD) that represents the architectural model, see Section 7.2. We

consider one central evaluation question:

Q6.1 How large is the e�ort reduction compared to manual analysis?

190

9.1. Overview

The Question Q6.1 asks about the e�ort reduction compared to manual analysis. With

manual analysis, we mean manually considering every element of the architecture, i.e.,

every DFD node. Here, con�dentiality violations identi�ed by architecture-based con�den-

tiality analysis [36, 236] represent the baseline, similarly to the previous Question Q5.1.

This enables us to reuse the terminology of binary classi�cation [198, 208]. Elements that

actually contain con�dentiality violations represent true positives (TP), elements that were

missed represent false negatives (FN), and overestimated elements represent false positives

(FP). Independent of the use of an impact analysis, software architects have to consider at

least all nodes that represent con�dentiality violations. Similar to change impact analysis

[210], we measure the ratio of the actual impact set (M6.1.1), which is calculated as:

A0C8>02CD0; =
)% + �#

=

Here, n represents the total number of DFD nodes. A low ratio indicates that only a few

elements of the DFD show con�dentiality violations, which represents the ideal results of

the impact analysis. For instance, a DFD with 10 nodes could have two nodes that violate

con�dentiality. In the case of a perfect recall, the set of elements containing con�dentiality

violations forms a lower bound to the required e�ort. Using the terminology introduced

in Section 6.3 and also used in the previous Question Q5.1, the actual impact set should

be a subset of the impact set. To compare this minimally required e�ort to the e�ort of the

impact analysis, we additionally measure the ratio of the uncertainty impact set (M6.1.2),

which is calculated as:

A0C8>8<?02C =
)% + �%

=

A low ratio indicates that only a few elements are potentially impacted by uncertainty.

For instance, a DFD with 10 nodes could have an uncertainty impact set comprising 3

of its nodes. The two metrics not only enable quantifying the e�ort reduction but also

show the overestimation of the impact analysis. In the case of the DFD with 10 nodes, 2

con�dentiality violations, and 3 elements in the impact set, the overestimation of 1 node

becomes visible. Although we expect the ratio of the actual impact set to be lower than the

ratio of the uncertainty impact set, this does not imply that uncertainty impact analysis

does not reduce the e�ort compared to manual con�dentiality analysis. As discussed

in Section 4.1 and Chapter 7, uncertainty-aware con�dentiality analysis requires more

detailed models and, thus, modeling e�ort by software architects. With a reasonable

overestimation, uncertainty impact analysis still reduces the overall e�ort with regard

to a �rst assessment of con�dentiality under uncertainty. In sum, the comparison of

con�dentiality analysis and uncertainty impact analysis enables a thorough evaluation of

accuracy and e�ort reduction.

191

9. Evaluation

G7: Validate the scalability of the uncertainty-aware data �ow analyses that corre-

late with the number of considered TFGs in the analysis.

Q7.1: How does the scalability of the uncertainty-aware analyses compare?

M7.1.1: Scalability of scenario-aware analysis, scalabilityscenario =
#(
|* |

M7.1.2: Scalability of graph-aware analysis, scalabilitygraph =
#�
|* |

M7.1.3: Scalability of impact-aware analysis, scalabilityimpact =
#�
|* |

Figure 9.7.: Overview of the GQM plan of the seventh goal regarding Contribution C3.

9.1.3. Evaluation Plan for the Third Contribution

The third Contribution C3 introduces four approaches to uncertainty-aware data �ow

analysis to identify con�dentiality violations with respect to uncertainty. We introduce

di�erent approaches that di�er in modeling and analyzing uncertainty within the archi-

tectural model. The fourth approach is tool-supported by r Abunai. The evaluation

comprises 2 goals, with a total of 5 questions and 11 metrics. The evaluation is related to

the evaluation of architecture-based con�dentiality analysis [233, 264].

Goal G7 Figure 9.7 shows the tree of the seventh goal. This goal investigates the scala-
bility of the di�erent approaches to uncertainty-aware data �ow analysis, introduced in

Chapter 7. Although design time analyses are not as critical as runtime analyses regarding

the execution time, they still can face combinatorial explosion [143]. The underlying data

�ow analysis framework, introduced in Section 7.2, scales with the number of analyzed

Transpose Flow Graphs (TFGs) [231]. To reach high scalability, the analysis approaches

must keep the number of additionally required TFGs to consider uncertainty as low as

possible. We consider one central evaluation question:

Q7.1 How does the scalability of the uncertainty-aware analyses compare?

The Question Q7.1 asks about the comparison of the scalability of the di�erent uncertainty-

aware data �ow analysis approaches. We reuse the terminology introduced in Section 7.3

and distinguish between scenario-aware, graph-aware, and impact-aware data �ow analysis

under uncertainty. To this end, we introduced formulas to calculate the number of required

TFGs to detect all con�dentiality violations due to uncertainty. This evaluation question

applies these formulas to the evaluation scenarios introduced in Chapter 8 to gain insights

on the actual impact on the scalability. To compare the di�erent analysis approaches, we

calculate the ratio of the number of required TFGs to the number of uncertainty sources.

We measure the scalability of scenario-aware analysis scalabilityscenario =
#(
|* | (M7.1.1),

192

9.1. Overview

G8: Validate the accuracy of the identi�ed con�dentiality violations of the

uncertainty-aware data �ow analysis approaches.

Q8.1: How accurate is the data �ow analysis under structural uncertainty?

M8.1.1: precision =)%
)%+�% ∈ [0, 1]

M8.1.2: recall =)%
)%+�# ∈ [0, 1]

Q8.2: How accurate is the data �ow analysis under environmental uncertainty?

M8.2.1: precision =)%
)%+�% ∈ [0, 1]

M8.2.2: recall =)%
)%+�# ∈ [0, 1]

Q8.3: How accurate is the tracing of uncertainty in data �ow analysis?

M8.3.1: precision =)%
)%+�% ∈ [0, 1]

M8.3.2: recall =)%
)%+�# ∈ [0, 1]

Q8.4: How accurate is the impact-aware data �ow analysis?

M8.4.1: precision =)%
)%+�% ∈ [0, 1]

M8.4.2: recall =)%
)%+�# ∈ [0, 1]

Figure 9.8.: Overview of the GQM plan of the eighth goal regarding Contribution C3.

the scalability of graph-aware analysis scalabilitygraph =
#�
|* | (M7.1.2), and the scalability

of impact-aware analysis scalabilityimpact =
#�
|* | (M7.1.3). For all metrics, lower values

are better. Here, the number of TFGs without considering uncertainty forms the lower

bound. We present this number for all evaluation scenarios in Table 8.2. For instance, if an

evaluation scenario has 3 TFGs and one analysis requires 10 TFGs to identify con�dentiality

violations due to uncertainty, and the second analysis only requires 7 TFGs, the second

analysis scales better. While we addressed this theoretically in Section 7.6, answering this

question provides us with empirical data and evidence on the actual scalability.

193

9. Evaluation

Goal G8 Figure 9.8 shows the tree of the eighth goal
3
. This goal validates the accuracy

of the uncertainty-aware data �ow analyses approaches. Evaluating the accuracy of

architecture-based analysis is common in related approaches [142, 233, 264]. It represents

the central quality property, as an analysis that misses con�dentiality violations quickly

looses value. The underlying data �ow analysis framework [36] and the architecture-based

con�dentiality analysis of Seifermann [233] represents the baseline regarding accuracy. We

are interested in whether we are able to additionally identify all con�dentiality violations

that are introduced by uncertainty sources. We consider four evaluation questions:

Q8.1 How accurate is the data �ow analysis under structural uncertainty?

Q8.2 How accurate is the data �ow analysis under environmental uncertainty?

Q8.3 How accurate is the tracing of uncertainty in data �ow analysis?

Q8.4 How accurate is the impact-aware data �ow analysis?

These four questions correspond to the four analysis approaches that were introduced in

Chapter 7. Question Q8.1 asks about the accuracy of data �ow analysis under structural

uncertainty, introduced in Subsection 7.4.1. Question Q8.2 asks about the accuracy of data

�ow analysis under environmental uncertainty, introduced in Subsection 7.4.2. Question

Q8.3 asks about the accuracy of tracing uncertainty in uncertainty type-agnostic data

�ow analysis, introduced in Subsection 7.5.1. Question Q8.4 asks about the accuracy of

uncertainty impact-aware data �ow analysis, introduced in Subsection 7.5.2. Similarly

to the accuracy evaluation shown in Q5.1, we use the metrics of precision and recall to

measure accuracy. We apply these metrics separately for each question, i.e., the Metrics

M8.1.1, M8.2.1, M8.3.1, and M8.4.1 measure precision, which is calculated as:

precision =
)%

)% + �%

A low precision indicates a high number of additionally identi�ed elements that do not

violate con�dentiality. Similarly to the discussion in Q5.1, we prefer recall over precision,

i.e., we accept false positives to some degree if we do not miss con�dentiality violations.

Here, the Metrics M8.1.2, M8.2.2, M8.3.2, and M8.4.2 measure recall:

recall =
)%

)% + �#

A low recall indicates missing con�dentiality violations due to uncertainty. For instance,

if a scenario comprises two con�dentiality violations due to uncertainty, and we only

identify one, this results in a lower recall. If we identify both violations but additionally

identify a third one, this results in a lower precision. We consider the accuracy (G8) to

be more important than the scalability (G7). Especially at design time, a longer analysis

execution time is acceptable—however, a severe lack of accuracy is not.

3
Note that all metrics represent the same calculation of precision and recall. We opt for this representation,

as they represent individual measurements, i.e., we consider the instance level, not the type level.

194

9.2. Evaluation of the Classi�cation and Identi�cation of Uncertainty

9.2. Evaluation of the Classification and Identification of
Uncertainty

In this section, we present the evaluation of the �rst Contribution C1, introduced in Chap-

ter 5. This contribution comprises a classi�cation of software-architectural uncertainty

regarding con�dentiality and a catalog of uncertainty sources to address the UAP. The

evaluation is based on the GQM plan presented in Section 9.1, and includes the Goals

G1, G2, G3, and G4. We use the evaluation scenarios introduced in Chapter 8. First, we

present the evaluation design. Afterward, we show and discuss the results for each goal

individually. We conclude with a discussion of threats to validity.

9.2.1. Evaluation Design

The evaluation of the �rst Contribution C1 starts with the investigation of the classi�ca-

tion structure’s suitability (G1). We use the evaluation scenarios of the CoronaWarnApp,

presented in Section 8.5, to compare the purpose of the classi�cation to the state of the

art (G3). Additionally, we conduct two user studies, concerning the applicability of the

uncertainty classi�cation (G2) and the usability of the uncertainty catalog (G4).

For the evaluation of Goal G1, we use the metrics by Kaplan et al. [132], which also

provide tool support. We measure laconicity (M1.1.1), lucidity (M1.1.2), completeness
(M1.2.1), and soundness (M1.2.2). The input to this measurement is the structure of the

classi�cation, i.e., all 8 categories and 27 options. Additionally, we extract 38 terms from

existing taxonomies that represent all aspects of the objects under study. Examples of

such terms are “fully reducible by acquiring enough knowledge”, or “uncertainty refers

to user input”. The full list of terms can be found in the data set [98]. Last, we provide

a mapping of the identi�ed terms to the classi�cation options, i.e., showing how these

terms would be classi�ed. Combined, the options, the terms, and the mapping represent

the input for the calculation of the metrics of Questions Q1.1 and Q1.2. To measure the

orthogonality (M1.3.1), we construct a self-referencing orthogonality matrix based on our

classi�cation’s options. An option that is implied by another is not orthogonal and thus

overlapping. Based on the 27 options of our classi�cation, we evaluate all 27 · 27− 27 = 702

potential combinations.

For the evaluation of GoalG2, we conduct a user study with 10 researchers from the domain

of software architecture. First, they complete a self-assessment, where they describe their

prior knowledge related to the task, e.g., uncertainty, and software architecture. Then,

we provide them with a one-page summary of our classi�cation presented in Section 5.3.

We show all categories and options and also an application example that demonstrates

how to use it, comparable to the running example shown in Chapter 3. All material used

in the user study is part of the data set [98]. During the study, the participants have to

classify two di�erent tasks within 15 minutes time, respectively. Each task consists of

an architecture diagram, a short description, and four uncertainty impacts to classify

using our classi�cation. We counterbalance the task order to mitigate learning e�ects and

195

9. Evaluation

anonymize the participants’ results. Last, they �ll out a SUS (M2.3.1) to measure the ease
of use and a questionnaire related to their understanding of our classi�cation. No session

takes longer than one hour to mitigate the e�ects of fatigue. After gathering all results,

we measure the reliability (M2.1.1) by calculating the percentage of the agreement using

the largest consensus, and the correctness (M2.2.1) by comparing the participants’ result

to a prede�ned gold standard and calculating the recall.

For the evaluation of Goal G3, we use the evaluation scenario of the CoronaWarnApp,

presented in Section 8.5. This scenario represents the largest software system in our pool

of evaluation scenarios, which also has comprehensive documentation. This does not only

include architecture documentation but also security analysis and risk assessment. By

rolling back design decisions and considering solutions for problems and risks that are

related to con�dentiality, realistic uncertainties can be analyzed. We create a collection of

28 uncertainty sources that are possible during the design process based on the available

documentation and Architectural Design Decisions (ADDs). This collection is also part

of the data set [98]. We use it as the baseline for the evaluation of the purpose. For each

category, we investigate whether it helps to understand the impact of the uncertainty

sources and is thus relevant (M3.1.1). This extends the evaluation of generality (Q1.1) and

appropriateness (Q1.2) based on a real software system. We compare all categories to other

taxonomies [41, 71, 162, 195, 202, 263] of uncertainty to evaluate the classi�cation’s novelty
(Q3.2) and measure innovation (M3.2.1) and adaptation (M3.2.2), as proposed by Kaplan

et al. [132]. We measure the classi�cation delta (M3.3.1) by classifying all 28 uncertainty

sources with our classi�cation and with other taxonomies [41, 162, 195] with a related

purpose. As our goal is a higher precision for the impact of uncertainty, we aim for a

positive classi�cation delta, i.e., a higher number of smaller equivalence classes.

For the evaluation of Goal G4, we conduct a user study with a total of 17 participants,

including 7 students, 5 researchers, and 5 practitioners. All participants have at least

basic knowledge of software architecture and design decisions. Regarding uncertainty,

con�dentiality, and security analysis, the expertise is more evenly spread with only very

few participants considering themselves experts. We conclude that these are excellent

conditions, as our approach shall not require expert knowledge but help beginners and

intermediate users. To answer Questions Q4.1 and Q4.2, the participants are given two

assignments, which they are asked to complete with the aid of our catalog. Both assign-

ments consist of an architecture diagram and a short scenario description, similar to our

running example, see Chapter 3. In the �rst assignment, participants are tasked to map

textual descriptions of annotated uncertainties to concrete uncertainty sources from our

catalog. In the second half of the assignment, participants are asked for their opinion

on the appropriateness of an uncertainty description and should provide their reason-

ing. While the former task provides data to evaluate the correctness of identifying and

describing uncertainty (M4.1.1), the latter also considers provided context information

and collaboration aspects (M4.2.1). In the second assignment, participants are tasked

with identifying uncertainties present in the provided architecture diagram and giving

a short reasoning for each. Here, we do not include any hint to applicable uncertainty

sources, requiring the participants to identify potential uncertainties themselves by using

our tool support. This also contributes to measure the correctness (M4.1.1). Similarly to

196

9.2. Evaluation of the Classi�cation and Identi�cation of Uncertainty

Question Metric Result

Generality (Q1.1) Laconicity (M1.1.1) 0.95

Lucidity (M1.1.2) 0.70

Appropriateness (Q1.2) Completeness (M1.2.1) 0.97

Soundness (M1.2.2) 1.00

Orthogonality (Q1.3) Orthogonality (M1.3.1) 0.99

Table 9.1.: Results of evaluation Goal G1 regarding the classi�cation structure’s suitability.

the previous goals, all materials are included in the data set [98]. To answer Question Q4.3,

we provide a SUS (M4.3.1). In the subsequent feedback session, the participants are asked

to rate the usefulness and intuitiveness (M4.3.2) of the di�erent features of r ARC
3
N, see

Section 5.7. They are also asked about their learning in the di�erent knowledge areas which

they self-assessed at the beginning of the study, and they are allowed to give additional,

qualitative feedback. To mitigate fatigue e�ects, no session took longer than one hour.

After all 17 participants’ results have been received, we evaluate the results by comparing

them to a gold standard that has been created independently and then uni�ed by two

researchers. Also, the comparison is conducted independently by two researchers, and all

inconsistencies have to be discussed and resolved.

9.2.2. Results and Discussion of the Structure’s Suitability

The �rst Goal G1 targets the classi�cation structure’s suitability, i.e., whether the classi�-

cation’s structure supports the description of uncertainty with regard to con�dentiality.

This goal comprises three evaluation questions with a total of �ve metrics. Table 9.1 shows

the results that will be explained and interpreted in the following.

The generality (Q1.1) asks about an appropriate generality level. The laconicity (M1.1.1)

is the fraction of terms of the classi�cation that are uniquely describable. With our

classi�cation � and the uncertainties representing the objects under study R, we measure

;02>=828C~ (�,R) = 36

38
= 0.95. We �nd two redundant terms. Uncertainty about a user’s

input can be classi�ed both as System Input and System Environment, both belonging to

the category Location, introduced in Table 5.1. Additionally, the uncertainty that does not

a�ect con�dentiality is described both with none regarding its impact, shown in Table 5.7

and none regarding its severity, shown in Table 5.8. The lucidity (M1.1.2) is the fraction of

options that describe exactly one term. Using the hereabove introduced classi�cation �

and objects under study R, we measure ;D2838C~ (�,R) = 19

27
= 0.70. We �nd several terms

that are described by the same option, e.g., System Structure describes both uncertainty

in components and assembly. Another example is the Realization Time of the category

ResolutionTime, shown in Table 5.5, that includes implementation and deployment as

this can be simpli�ed from a design time perspective. Furthermore, the options of the

category Manageability, shown in Table 5.4 do not detail how to reduce uncertainty, which

subsumes multiple terms. The appropriateness (Q1.2) asks whether only necessary classes

197

9. Evaluation

Question Metric Result

Reliability (Q2.1) Annotator consensus (M2.1.1) 0.69

Correctness (Q2.2) Recall (M2.2.1) 0.73

Ease of use (Q2.3) SUS (M2.3.1) 68.25

Table 9.2.: Results of evaluation Goal G2 regarding the classi�cation’s applicability.

are in the classi�cation. The completeness (M1.2.1) is the of terms that can be described

using the classi�cation. With the given � and R, we measure 2><?;4C4=4BB (�,R) =
37

38
= 0.97. The completeness is reduced because we do not explicitly handle known

uncertainty sources that never resolve, i.e., the classi�cation lacks an according option in

the category Resolution Time, shown in Table 5.5. The soundness (M1.2.2) is the fraction

of unnecessary options. We measure B>D=3=4BB (�,R) = 27

27
= 1.0, i.e., the absence of

unnecessary options. Last, the orthogonality (Q1.3) asks about overlapping classes. The

orthogonality (M1.3.1) counts orthogonal, non-overlapping terms. Using an orthogonality

matrix, we measure >ACℎ>6>=0;8C~ (�,R) = 695

702
= 0.99. We identify overlapping in 7 of 702

cases, e.g., uncertainty about the system’s input implies a behavioral description and there

exists the already identi�ed relation between none regarding the impact and the severity

of uncertainty. The full mapping and the orthogonality matrix are in the data set [98].

Regarding the laconicity (M1.1.1), we argue that the remaining two redundant terms are

totally acceptable and originate due to the increased precision regarding con�dentiality.

Having categories to describe both the uncertainty impact type and its severity is an

intentional design decision to aid software architects. Thus, we accept this small reduction

in redundancy. Regarding the lucidity (M1.1.2), we could reach a higher score by adding

more options to the classi�cation. However, we argue that more �ne-grained options

would only harm the purpose of classifying and clustering uncertainties to understand

their impact and mitigation. When evaluating completeness (M1.2.1), we only identify a

lack of means to describe uncertainty that never resolves. However, from a design time

point of view, it does not matter whether an uncertainty resolves at run time or never.

Regarding soundness (M1.2.2), the perfect result is expected, as we intentionally build the

classi�cation to �t our purpose. Last, there are some overlaps in the orthogonality matrix

(M1.3.1). However, none of the overlaps are comprehensive enough to justify the removal

of a category or an option, which would negatively impact the other metrics. We conclude

that these results are satisfying regarding generality (Q1.1), appropriateness (Q1.2), and

orthogonality (Q1.3). Thus, the classi�cation’s structure is suitable (G1). We may continue

with the second evaluation step as proposed by Kaplan et al. [132].

9.2.3. Results and Discussion of the Applicability

The second Goal G2 focuses on the classi�cation’s applicability, i.e., whether the classi�-

cation is understandable and usable. This goal comprises three evaluation questions with

198

9.2. Evaluation of the Classi�cation and Identi�cation of Uncertainty

a total of three metrics. Table 9.2 shows the results. Again, we split the presentation and

interpretation of the results.

To address this goal, we conducted a user study with 10 participants. The reliability (Q2.1)

asks whether the classi�cation produces consistent results when used by multiple users.

We calculate the relative size of the largest consensus (M2.1.1) for each category. The

average measured agreement is 69 percent. This means that on average, approximately

seven out of ten participants agree on a classi�cation. A high agreement is measured in the

categories Location, Impact on Con�dentiality, Severity of the Impact, and Reducible by ADD.

The lowest agreement is measured in the category Resolution Time. The correctness (Q2.2)

asks whether the user’s results are correct. Using a prede�ned gold standard, we calculate

a recall (M2.2.1) of 0.73. This means that on average, three out of four classi�cations are

correct, i.e., they match with the goal standard. We �nd high correctness with a recall

of 0.95 in the categories Location and Architectural Element Type. The lowest correctness

is measured in the categories Type and Resolution Time with a recall of 0.6 and 0.65,

respectively. We also �nd that the correctness �uctuates depending on the uncertainty

impact that has to be classi�ed by the participants. The ease of use (Q2.3) asks whether the

classi�cation is easy to understand. Using a SUS (M2.3.1), we calculate the result of 68.25.

On the one hand, the participants valued the guidance and consistency of the classi�cation.

On the other hand, they felt not con�dent in using the classi�cation and assumed that

they would require additional training. In the questionnaire after the user study, most of

the categories were considered understandable and helpful in describing the impact of

uncertainty. The only outlier is the category Type. Raw results are in our data set [98].

Before discussing the results, we �nd that the group of participants was appropriate for

this user study. The self-assessment shows that the researchers have comprehensive

knowledge about software architecture but no or only little knowledge about uncertainty,

or con�dentiality. Architecture-related categories of the self-assessment were rated with

an average knowledge of 3 out of 4. Uncertainty and security-related categories of the self-

assessment were rated between 1.5 and 2 out of 4. Regarding largest consensus (M2.1.1)

and the correctness (M2.2.1), one explanation of the non-perfect results is the earlier

description of several categories, which were ambiguous and thus have been re�ned.

Based on the participants’ feedback, we �nd that the result can also be explained with

the short case descriptions of about a quarter of a page and the hard timing constraints.

Short descriptions of �ctional architectures can leave a large room for interpretation. In

view of the fact that the participants had no prior experience in classifying uncertainty,

these results still are satisfying. Based on the SUS (M2.3.1) and the questionnaire, we

�nd a lack in the category Type. However, the value of this category has already been

discussed in multiple publications [162, 263] and helps in design time con�dentiality

analysis, see Chapter 5. Also, based on the participants’ feedback, we summarize that our

classi�cation is a su�ciently useful tool for understanding the impact of uncertainty, but

it requires some familiarization. Most of the participants welcomed a lively debate about

their classi�cations after the study sessions which is what we aimed for. This �nding is

supported by the post-survey questionnaire, where the participants rated on average with

3.3 out of 4 that they learned something about con�dentiality and the di�erent types of

uncertainty, i.e., the categories where they previously stated a lack of experience. We

199

9. Evaluation

Question Metric Result

Relevance (Q3.1) Fraction of relevant classes (M3.1.1) 1.00

Novelty (Q3.2) Innovation (M3.2.1) 0.49

Adaptation (M3.2.2) 0.51

Signi�cance (Q3.3) Classi�cation delta (M3.3.1) 0.54

Table 9.3.: Results of evaluation Goal G3 regarding the classi�cation’s purpose.

conclude that these results are not perfect but support the reliability (Q2.1), correctness
(Q2.2), and ease of use (Q2.3). Thus, the classi�cation is applicable (G2). This evaluation

also shows the need for appropriate documentation and assistance, which motivates our

tooling r ARC
3
N.

9.2.4. Results and Discussion of the Purpose

The third Goal G3 targets the classi�cation’s purpose, i.e., its quality and relevance com-

pared to existing classi�cations from related work. This goal comprises three evaluation

questions with a total of four metrics. Table 9.3 shows the results that will be explained

and interpreted in the following. Note that we combine the presentation and interpretation

of this goal’s results as the majority of its metrics depend on argumentation.

The relevance (Q3.1) asks about the relevance of the classi�cation, i.e., whether it only

contains elements that are required to describe the objects under study and is based on

argumentation. To answer this question, the fraction of classes relevant for the purpose

of the classi�cation shall be investigated (M3.1.1). The purpose of our classi�cation

is to describe the impact of software-architectural uncertainty on con�dentiality. The

relevance of the category Location has already been discussed in other work [41, 195].

We use Architectural Element Type because this enables the connection to architectural

modeling and analysis. We use this category throughout Chapter 6 and Chapter 7 as the

primary dimension to distinguish the �ve uncertainty types. We argue that Type and

Manageability are better to describe uncertainty than only to refer to its level because

this helps in choosing appropriate mitigation strategies. For instance, a scenario-based,

reducible uncertainty can be handled di�erently from a recognized, irreducible uncertainty.

Resolution Time, Reducible by ADD and both impact-related categories can be used in

prioritization together with connected ADDs. This prioritization and connection to ADDs

is important because it helps structure the software design and also helps focus modeling

and analysis capabilities [150]. Impact on Con�dentiality and Severity of the Impact are

reserved for an early estimation and help to streamline the subsequent analysis procedure,

see Section 4.1. We close that no category can omitted without signi�cantly reducing the

expressiveness and thus the fraction of relevant classes is 1.0. The novelty (Q3.2) asks

about the degree of new and adapted categories and classes compared to the state of the

art. We investigate the classi�cation and calculate innovation (M3.2.1) and adaptation
(M3.2.2). Examples of adopted categories are the Resolution Time or Severity of the Impact.

200

9.2. Evaluation of the Classi�cation and Identi�cation of Uncertainty

Question Metric Result

Identi�cation (Q4.1) Correctness (M4.1.1) 0.88

Collaboration (Q4.2) Correctness (M4.2.1) 0.65

Ease of use (Q4.3) SUS (M4.3.1) 69.71

Average rating (M4.3.2) 3.1/4

Table 9.4.: Results of evaluation Goal G4 regarding the catalog’s usability.

An example of a new option is the partial reducibility. We �nd the hard distinction between

manageable and irreducible not precise enough for design time mitigation. Also in our

running example, presented in Chapter 3, we were able to better understand and partially

reduce the impact of uncertainty. This option was independently incorporated in the

current working version of Precise Semantics for Uncertainty Modeling (PSUM) standard

[184], which underlines its relevance. A full discussion of the relation of the classi�cation

to the state of the art can be found in Subsection 5.2.3 and in our data set [98]. We

are right in the middle between innovation with
17

35
= 0.49 new categories and options,

andadaption with
18

35
= 0.51 categories and options. This is expected as we build upon

existing taxonomies but extend them to �t our purpose. The signi�cance (Q3.3) asks

whether the classi�cation is able to provide a more detailed description of the objects

under study. We measure the classi�cation delta (M3.3.1) by comparing our classi�cation

to the most related taxonomies [41, 162, 195]. Here, our classi�cation is able to distinguish

the 28 uncertainties into 23 equivalence classes. The taxonomy of Bures et al. [41] yields 5

equivalence classes, the classi�cation framework of Mahdavi-Hezavehi et al. [162] yields

8 equivalence classes and the taxonomy of Perez-Palacin and Mirandola [195] yields 4

equivalence classes. Thus, the most precise result of the state of the art is a distinction into

8 equivalence classes and the classi�cation delta is
23−8
28

= 0.54. As we aimed for higher

precision, a value higher than 0 is su�cient. This indicates that our classi�cation is able to

describe the relation of uncertainty and con�dentiality with notably higher precision than

the most precise already existing classi�cation. We conclude that these results support the

relevance (Q3.1), novelty (Q3.2), and signi�cance (Q3.3) and thus justify the purpose (G3).

This completes the evaluation method of Kaplan et al. [132].

9.2.5. Results and Discussion of the Usability

The fourth Goal G4 revolves around the catalog’s usability, i.e., whether the catalog

approach helps identify and understand uncertainty sources. This goal comprises three

evaluation questions with a total of four metrics. Table 9.4 shows the results. Here, we

split again the presentation and interpretation of the results.

To address this goal, we conducted a user study with 17 participants. Similarly to the

user study of Goal G2, the participants �lled a self-assessment prior to the study. The

correctness of the identi�cation (Q4.1) asks whether the catalog supports the identi�cation

and description of uncertainty sources in architectural models. We calculate the percentage

201

9. Evaluation

Uncertainty Knowledge Identi�cation (M4.1.1) Collaboration (M4.2.1)

No Prior Knowledge 0.74 0.60

Little Prior Knowledge 0.94 0.43

Good Prior Knowledge 0.94 1.00

Expert Prior Knowledge 1.00 1.00

Average of all answers 0.88 0.65

Table 9.5.: Percentage of correct answers in the user study of Goal G4 grouped by prior knowledge.

of correct answers (M4.1.1) by comparing the participants’ results to a prede�ned gold

standard. Here, the participants reached an average correctness of 88%. This means on

average, approximately nine out of ten uncertainty sources were identi�ed and described

correctly. Table 9.5 maps the percentage of correct answers onto the reported knowledge

on the uncertainty of the self-assessment. Here, the prior knowledge correlates with the

correctness, starting at 74% without prior knowledge, and jumping to 94% with little prior

knowledge. The correctness of the collaboration (Q4.2) asks whether the catalog supports

the collaboration. Again, we calculate the percentage of correct answers (M4.2.1). Table 9.5

shows a larger gap between participants with no or little knowledge and more experienced

users. Nevertheless, the average correctness reaches 65%. Note that both average values

take the distribution of the participants’ prior knowledge into account. The ease of use asks

about the user experience of the catalog approach and its tool support r ARC
3
N. We use a

SUS (M4.3.1) with a cumulative score of 69.71 and ask the participants to rate usefulness and
intuitiveness (M4.3.2). The average usefulness was rated 3.2 and the average intuitiveness

was 3.0 on a scale of 1 to 4, averaging to 3.1. The results regarding individual features

show that the participants especially liked the explanations using example scenarios

and graphics, with an average score of 3.76 out of 4 in both cases. Relating uncertainty

sources to the classi�cation and showing the inheritance relationship of uncertainties was

considered useful but not intuitive, with scores of 2.1 and 2.3, respectively. The raw results

of all participants and all calculations are part of the data set [98].

Similarly to the user study conducted to evaluate Goal G2, we �nd that the group of

participants was appropriate for this user study. The participants had little to no prior

knowledge regarding uncertainty and con�dentiality but were experienced regarding

software architecture and ADDs. Regarding the correctness of the identi�cation (M4.1.1),

we �nd that an overall correctness of 88% is satisfying. Interestingly, the correctness jumps

from 74% to 94% depending on the prior knowledge, indicating that our catalog facilitates

the correct identi�cation of uncertainties even with little knowledge. We assume this group

would greatly bene�t from our approach, as experts already know enough about analyzing

uncertainty, even without support. The correctness of 100% with expert knowledge in all

questions is not surprising. Compared to the user study of Goal G2, which had a similar

setup, we reach a notably higher correctness score in describing uncertainty, i.e., 88% com-

pared to 73% (M2.2.1). This supports the need for a tool-supported catalog to complement

a classi�cation and make it useful. Regarding the correctness of the collaboration (M4.2.1),

the results are acceptable but not optimal. We see a similar correlation between experience

202

9.2. Evaluation of the Classi�cation and Identi�cation of Uncertainty

and correctness, but the results with limited prior knowledge are worse. One possible

explanation could be that the earlier prototype that has been used for this user study did

not highlight discussions enough. We addressed this shortcoming, enhancing both the

structure and visualization quality of r ARC
3
N, and include both variants in the data set

[98]. Regarding the SUS (M4.3.1), the score of 69.71 indicates a good usability, comparable

to the usability of the classi�cation of 68.25 (M2.3.1). Regarding the participants’ rating

of intuitiveness and usefulness (M4.3.2), we also addressed the lack of intuitiveness in an

enhanced version of the tool support. Overall, the majority of features were rated to be

useful, which is satisfying. At the end of the user study, we asked the participants about

their learnings in di�erent categories on a scale from 1 to 4. The participants stated that

they had learned the most about uncertainty and the di�erent uncertainty types with a

score of 3.4 and 3.7, respectively. This represents a promising result as it indicates that

the catalog indeed complements and supports the classi�cation and provides increased

usability. We conclude that these results support the quality of the identi�cation (Q4.1)

and collaboration (Q4.2), and ease of use (Q4.3). Thus, the catalog approach is usable
(G4). Combined with the evaluation results of Goal G2 regarding the applicability of the

classi�cation, this also supports the interplay of our classi�cation with our tool-supported

catalog approach.

9.2.6. Threats to Validity

We conclude the evaluation of the �rst Contribution C1 with a discussion of the threats to

validity of Goal G1 – G4. As the evaluation presented in this section is partially based on

evaluation scenarios, we follow the guidelines of Runeson and Höst [212]. They propose

to discuss internal validity, external validity, construct validity, and reliability. These

categories are also suitable for other validation designs and have also been used to discuss

the validity of the evaluation in related work [233, 264]. Structuring the discussion of

threats to validity addresses the lack of guideline-based validity discussions of software

architectural research, identi�ed by Konersmann et al. [142].

Internal validity The internal validity re�ects whether the evaluation results depend

only on the factors examined, without being in�uenced by other factors. The biggest

threat to the evaluation of the structure’s suitability (G1) is that it is only performed by a

single researcher based on limited experience. Here, a di�erent selection of terms for the

calculation of metrics like laconicity (M1.1.1) and lucidity (M1.1.2) could lead to di�erent

results. We adhere to the method, metrics, and guidelines of Kaplan et al. [132] as closely

as possible and also discussed the procedure with the original authors to address this

threat. Another threat to internal validity arises due to the self-de�ned gold standard in

the evaluation of applicability (G2). To counter this, we try to keep the derived uncertainty

sources as close as possible to the documented design decision of the CoronaWarnApp,

see Section 8.5. Other threats to the internal validity arise when conducting user studies.

To counter learning e�ects of the participants, we counterbalance the tasks of the �rst

user study (G2). Additionally, we measure the experience of all participants upfront and

203

9. Evaluation

interpret the results of both user studies (G2 and G4) with regard to the prior knowledge

of the participants. Last, fatigue e�ects can degrade the results of a user study. We address

this concern by keeping the total duration of each session lower than one hour.

External validity The external validity re�ects the generalizability of the evaluation

results to other cases or domains. Regarding the evaluation of the classi�cation, the

generalizability of our results is threatened by the number of participants in our user

study (G2) and the selection of the evaluation scenario (G3). Still, we argue that both

were large enough to identify a general trend of applicability (G2) and purpose (G3). The

participating researchers deal with software architecture in their daily work. Additionally,

the participants classi�ed two architecture models with four uncertainties each, which

yields a set of 80 classi�ed uncertainties and 640 selected options. We argue that this

represents a reasonable size to reason about the quality of the classi�cation. Additionally,

the Corona Warn App is a large open-source system that was actively observed by the

community during the time of this research. Our catalog of uncertainty shows that

the identi�ed uncertainty sources are independent of the domain and can be applied to

other systems, e.g., to a Cyber-Physical System (CPS) or mobility systems. Additional

information on the construction of the evaluation scenario can be found in [23]. Regarding

the evaluation of the catalog (G4), the study’s limitation is the sample of 17 participants

from various occupational backgrounds. While this sample size may not fully re�ect

the broader population of software architects, the diversity in participants’ experiences

and backgrounds still o�ers valuable insights into the utility of the approach. We do not

compare the user study results with a baseline approach as we did not �nd a suitable one.

We do not �nd it expedient to compare our approach to a control group, which tries to

identify uncertainty sources without any tool support just by relying on classi�cation

papers [104, 202]. We also do not perform signi�cance tests. Nevertheless, comparing the

results of the user studies of the classi�cation (G2) and the catalog (G4) implies that we

outperform the accuracy of classi�cation-based assessment without tool support.

Construct validity The construct validity re�ects whether the measurements are suitable

for representing the evaluation objectives. Overall, we apply a GQM-based evaluation

plan [16, 17] to minimize the risk of collecting data that does not help to target the

evaluation goals. Additionally, we use metrics from other work whenever possible. For

evaluating the classi�cation (G1 – G3), we use the evaluation method of Kaplan et al. [132],

which itself relates to other work in this area when de�ning goals, questions, and metrics.

Here, the SUS (G2) provides a standardized format, which might not �t the evaluation of

classi�cations. We mitigate this using a questionnaire that yields similar results regarding

usability. The same applies to the evaluation of the catalog’s usability (G4). Additionally,

our interpretation of the results of all evaluation goals does not depend on a single metric

but takes into account the bigger picture. This minimizes the risk of false conclusions

due to a single defective measurement. Last, we want to state that the evaluation of our

classi�cation surpasses the comprehensiveness of other evaluations of taxonomies in

related work [41, 162, 195].

204

9.3. Evaluation of the Uncertainty Impact Analysis

Reliability The reliability re�ects the repeatability and whether the evaluation results

are dependent on the speci�c researchers. Here, the evaluation of the classi�cation (G1 –

G3) is only performed by a single researcher. Di�erent evaluators could produce di�erent

conclusions. We address this by rigorously following a simultaneously published evaluation

method [132] that other researchers can also follow. The correctness results (G4) stem

from the assessment of the participants’ answers relying on individual researchers which

can inherently not be standardized. The user study’s execution over nine online meetings

could also have in�uenced the consistency of the results [84]. To mitigate these risks, we

use strictly structured sessions, and two researchers evaluate the results independently.

To maximize the repeatability of the evaluation, we provide a data set [98] comprising all

raw data, study results, calculations, questionnaires, interpretations, and di�erent versions

of the catalog’s tool support r ARC
3
N.

9.3. Evaluation of the Uncertainty Impact Analysis

In this section, we present the evaluation of the second Contribution C2, introduced in

Chapter 6. This contribution comprises an architecture-based uncertainty impact analysis

to predict con�dentiality violations. The evaluation is based on the GQM plan presented in

Section 9.1, and includes the Goals G5 and G6. We use the evaluation scenarios introduced

in Chapter 8. First, we present the evaluation design. Afterward, we show and discuss the

results for each goal individually. We conclude with a discussion of threats to validity.

9.3.1. Evaluation Design

The evaluation of the second Contribution C2 comprises investigating the accuracy (G5)

and the e�ort reduction (G6) of uncertainty impact analysis. We use the evaluation scenarios

of the CoronaWarnApp, presented in Section 8.5, and MobilityAsAService, presented in

Section 8.6. These two scenarios are the largest software systems, where uncertainty

impact analysis is most valuable. In order to gain insights into the actual prediction

quality, we focus on these two evaluation scenarios. Both evaluation scenarios represent

non-trivial software systems, with 21 and 18 components, respectively. The resulting

DFD of the CoronaWarnApp comprises 506 nodes and the DFD of MobilityAsAService has

267 nodes. To gain more precise results, we split the evaluation into sub-scenarios. The

CoronaWarnApp already consists of four sub-scenarios that comprise two uncertainty

sources each. Regarding MobilityAsAService, we consider each of the �ve uncertainty

sources as a sub-scenario. All models and sub-scenarios can be found in the data set [98].

205

9. Evaluation

Question Metric Result

Accuracy (Q5.1) Precision (M5.1.1) 0.78

Recall (M5.1.2) 1.00

F1 score (M5.1.3) 0.88

Table 9.6.: Results of evaluation Goal G5 regarding the uncertainty impact analysis’ accuracy.

For the evaluation of Goal G5, we use r UIA as automated uncertainty impact analysis

to calculate the individual impact sets of uncertainty for all scenarios
4
. These sets consist

of DFD nodes that were identi�ed based on the uncertainty propagation algorithms de-

scribed in Section 6.5. Afterward, we alter the modeled system to violate con�dentiality

for each annotated uncertainty source, e.g., by adding a bug in the validation of the user

input or changing the server deployment locations. Here, we follow the description of

the evaluation scenarios, its con�dentiality requirements, and publicly available docu-

mentation. This represents the manual con�dentiality analysis of what-if scenarios [233].

Manually modeling and analyzing con�dentiality due to uncertainty requires more e�ort

[101] but only yields actual violations, i.e., the actual impact set. Based on both sets, we

evaluate the accuracy to answer Question Q5.1. We count nodes as true positive (TP) if

they are contained in both sets and represent correctly predicted con�dentiality violations.

Elements of the impact set that do not violate con�dentiality and thus overestimate the

actual impact set are counted as false positives (FP). DFD nodes that neither violate con-

�dentiality nor have been identi�ed by our analysis are classi�ed as true negative (TN).

Elements of the actual impact set that were not identi�ed by our analysis are counted as

false negatives (FN). This enables calculating precision (M5.1.1), recall (M5.1.2), and the

F1 score (M5.1.3).

For the evaluation of Goal G6, we follow a similar approach. We use r UIA as automated

uncertainty impact analysis to calculate the individual impact sets of uncertainty and

manual con�dentiality analysis [233] to calculate the actual impact set. Additionally, we

use the aforementioned total count of DFD nodes to evaluate the e�ort reduction to answer

Question Q6.1. We follow the same classi�cation of elements in both sets as in Question

Q5.1. This enables calculating the ratio of the actual impact set, A0C8>02CD0; (M6.1.1), and

the ratio of the uncertainty impact set, A0C8>8<?02C (M6.1.2).

9.3.2. Results and Discussion of the Accuracy

The �fth Goal G5 targets the accuracy of the uncertainty impact analysis, i.e., whether the

resulting uncertainty impact set is both precise and complete. This goal comprises one

4
Note that the current implementation of r UIA uses an earlier version of the analysis framework,

presented in Section 7.2. Thus, the number of DFD nodes slightly di�ers compared to the size metrics of

the evaluation scenarios, presented in Section 8.1. However, this does not negatively impact the evaluation,

as we calculate all metrics in this section based on the correct reference values.

206

9.3. Evaluation of the Uncertainty Impact Analysis

CoronaWarnApp MobilityAsAService
S1 S2 S3 S4 S1 S2 S3 S4 S5 ∅

Precision 0.838 1.000 0.840 0.882 0.095 0.923 0.500 0.967 1.000 0.783

Recall 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F1 score 0.912 1.000 0.913 0.938 0.174 0.960 0.667 0.983 1.000 0.878

A0C8>02CD0; 0.155 0.080 0.105 0.300 0.010 0.062 0.016 0.150 0.140 0.113

A0C8>8<?02C 0.185 0.080 0.125 0.340 0.109 0.067 0.031 0.155 0.140 0.137

Table 9.7.: Accuracy and e�ort reduction of all sub-scenarios of the CoronaWarnApp and MobilityAsAService.

evaluation question and a total of three metrics. Table 9.6 shows the results. Similar to the

previous sections, we split the presentation and interpretation of the results.

The accuracy (Q5.1) asks about the precision and completeness of the predicted impact

set of the uncertainty impact analysis compared to manual con�dentiality analysis. As

described above, we use r UIA to calculate the uncertainty impact sets and measure

precision (M5.1.1) and recall (M5.1.2), and calculate the F1 score (M5.1.3). We repeat this

for all four sub-scenarios of the CoronaWarnApp, introduced in Section 8.5, and all �ve sub-

scenarios of the MobilityAsAService evaluation scenario, introduced in Section 8.6. Table 9.7

shows the individual results for all sub-scenarios. We see an overall high precision with an

average of 0.783. In all nine sub-scenarios, every con�dentiality violation was predicted

by the impact analysis. Thus, the actual impact set is always a subset of the uncertainty

impact set which results in the optimal recall of 1.0. We calculate a F1 score of 0.878. In Sub-

scenario S1 of the CoronaWarnApp, the uncertainty focuses on one single component and is

primarily propagated in the data �ow diagram rather than the architectural model. Because

the con�dentiality violation happens near to the data sink, the overestimation results in

an �1 score of 0.912. In Sub-scenario S2, the uncertainty is located in the environment

of the software system. The con�dentiality violations are also located in the data �ow

diagram nodes that represent the environment, e.g., in data sinks that represent databases.

Thus, this sub-scenario results in the optimal F1 score of 1.0. Sub-scenario S3 focuses on

uncertainty in the behavior of di�erent parts of the system. Here, the uncertain validation

of exchanged keys leads to con�dentiality violations when they are inserted into the

database. This sub-scenario yields an F1 score of 0.913. Sub-scenario S4 contains only

wide-spreading uncertainty sources in central components like the main server database

component. Although this results in a precision of 0.882, still, all con�dentiality violations

are correctly predicted with a F1 score of 0.938. Despite the lacking precision, the analysis

could still correctly exclude uncertainty impacts in 7 of the 14 extracted data �ows, e.g.,

there is no impact on the test result servers if the application server fails. In Sub-scenario

S1 of MobilityAsAService, the uncertainty a�ects the user role early in the data �ow but the

con�dentiality violation happens near the sink. This results in the largest overestimation

of all sub-scenarios and a precision of 0.095. Sub-scenario S3 handles the leaking of user

information. Due to the relatively short data �ow, the precision is only 0.5, although

the overestimation is comparably low. The other Sub-scenarios S2, S4, and S5 show high

precision with 0.923, 0.967, and 1.000.

207

9. Evaluation

Question Metric Result

E�ort reduction (Q6.1) A0C8>02CD0; (M6.1.1) 0.11

A0C8>8<?02C (M6.1.2) 0.14

Table 9.8.: Results of evaluation Goal G6 regarding the uncertainty impact analysis’ e�ort reduction.

Regarding the precision (M5.1.1), the impact analysis provides promising results in the

majority of sub-scenarios. By comparing the results of all sub-scenarios, we identify two

sub-scenarios where the analysis provides larger overestimations. First, wide-spreading

uncertainty sources in central elements of the software architecture naturally a�ect more

data �ows, e.g., in Sub-scenario S4 of the CoronaWarnApp. Second, uncertainty sources

that are located near the source of a data �ow propagate until its sink, resulting in a

larger impact set, e.g., in Sub-scenario S1 of the CoronaWarnApp and Sub-scenario S1 of

MobilityAsAService. In both sub-scenarios, the precision is reduced, with values between

0.095 and 0.882. Regarding the recall (M5.1.2), we achieve the optimal result of 1.000 in all

sub-scenarios. This is expected as the uncertainty impact set shall always be a superset of

the actual impact set, see Section 6.3. Regarding the �1B2>A4 (M5.1.3) that represents the

overall accuracy, we see satisfying results in the majority of sub-scenarios. As the recall

stays at 1.0, the score is only lowered with suboptimal precision. Here, only Sub-scenario

S1 of MobilityAsAService results in a bad score of 0.174. We consider this a side e�ect of

our optimization towards recall, see Section 9.1. Still, the analysis is able to accurately

reject 7 out of 8 data �ows of not being a�ected by uncertainty. With respect to the role of

an uncertainty impact analysis as an early prediction in our procedure, see Section 4.1, we

tolerate such overestimation. Here, we want to highlight the importance of optimizing for

high recall, i.e., fewer false negatives rather than high precision, i.e., fewer false positives.

Impact analyses, like change impact analysis, are used to make early predictions of the

possible outcomes of external in�uences. Especially regarding security-related properties

like con�dentiality, missing violating elements could have severe results. Furthermore,

overestimation is common among impact analyses [23, 112, 210]. We conclude that the

results are satisfying regarding the precision and completeness (Q5.1) of the uncertainty

impact analysis results. Thus, the uncertainty impact analysis is accurate (G5). Still, the

impact analysis requires manual interpretation by software architects. We continue with

the e�ort reduction evaluation.

9.3.3. Results and Discussion of the E�ort Reduction

The sixth Goal G6 focuses on the e�ort reduction of uncertainty impact analysis, i.e.,

whether using the analysis reduces the interpretation e�ort by software architects com-

pared to manual analysis. This goal comprises one evaluation question with a total of two

metrics. Table 9.8 shows the results. We present the results and interpret them afterward.

The e�ort reduction (Q6.1) asks about the manual interpretation e�ort by software archi-

tects of the impact analysis compared to manual analysis, i.e., how many DFD nodes have

208

9.3. Evaluation of the Uncertainty Impact Analysis

to be considered when investigating potential con�dentiality violations. To compare the

e�ort and to measure the reduction, we calculate the ratio of all nodes to the actual impact

set A0C8>02CD0; (M6.1.1) and the ratio of all nodes to the uncertainty impact set A0C8>8<?02C
(M6.1.2). Similar to Goal G5, we repeat this procedure for all nine sub-scenarios of the

CoronaWarnApp and MobilityAsAService evaluation scenarios. Table 9.7 shows the results.

As discussed previously, in all nine sub-scenarios, every con�dentiality violation was pre-

dicted. Thus, the actual impact set is always a subset of the uncertainty impact set, which

results in the optimal recall of 1.0. This also implies that the ratio of the actual impact set

is a lower limit to the ratio of the uncertainty impact set, i.e., A0C8>02CD0; ≤ A0C8>8<?02C ≤ 1.

A value lower than the A0C8>02CD0; would imply that a con�dentiality violation was missed,

which results in a lowered recall. Trivially, if the precision reaches its optimum, both sets

and also both ratios are equal. This happens in Sub-scenario S2 of the CoronaWarnApp and

Sub-scenario S5 of MobilityAsAService. In the majority of other sub-scenarios, both ratios

are relatively close, e.g., 0.155 compared to 0.185 in Sub-scenario S1 of the CoronaWarnApp.

The only outlier is Sub-scenario S1 of the MobilityAsAService evaluation scenario. Due to

the lack of precision, A0C8>8<?02C is 0.109 instead of the optimal value of 0.010, i.e., approxi-

mately ten times more nodes have to be considered. Still, the e�ort is reduced compared

to manual interpretation without using any analysis.

Regarding the ratio of the actual impact set A0C8>02CD0; (M6.1.1), we �rst want to state its

implications for con�dentiality analysis. Although all evaluation scenarios intentionally

contain multiple con�dentiality violations, see Table 8.2, the amount of a�ected DFD

nodes is relatively low. The ratio of the actual impact set ranges from 0.010 to 0.300, with

an average of 0.113. This means that, on average, only 11% of all DFD nodes contain

con�dentiality violations. As stated previously, identifying such nodes manually with-

out assistance is cumbersome [233, 234]. Regarding the ratio of the uncertainty impact

set A0C8>8<?02C (M6.1.2), the number of nodes that software architects have to consider

is notably reduced by 86% to a A0C8>8<?02C of 0.137, which is near the optimal value of

A0C8>02CD0; = 0.113. Furthermore, to reach the optimal value, software architects are re-

quired to apply uncertainty-aware con�dentiality analysis, e.g., one of the approaches

introduced in Chapter 7. This requires them to model uncertainty sources and scenarios

as part of the software architecture, which requires more modeling e�ort than using an

uncertainty impact analysis. With the uncertainty impact analysis, an element of the

software architecture only has to be annotated with an uncertainty source without the

need to de�ne any what-if scenarios. The calculation of the impact set is fully automated.

The required e�ort to adapt the model to reach the optimal value is arguably higher than

inspecting the additional DFD nodes of the uncertainty impact set. See Chapter 4 for

an explanation of the relation between impact analysis and con�dentiality analysis. We

conclude that results are satisfying regarding the e�ort reduction (Q6.1) of the uncertainty

impact analysis compared to manual con�dentiality analysis. Thus, the uncertainty impact

analysis reduces the e�ort required by software architects (G6).

209

9. Evaluation

9.3.4. Threats to Validity

We conclude the evaluation of the second Contribution C2 with a discussion of the threats

to validity of Goal G5 and G6. As this evaluation uses the evaluation scenarios introduced

in Chapter 8, we follow the guidelines of Runeson and Höst [212]. They propose to discuss

internal validity, external validity, construct validity, and reliability. This also addresses

the lack of guideline-based validity discussions of software architectural research [142].

Internal validity The internal validity re�ects whether the evaluation results depend

only on the factors examined, without being in�uenced by other factors. In uncertainty

impact analysis, one threat to internal validity is human error. For instance, selecting the

wrong type of uncertainty source a�ects which propagation algorithm is chosen, ultimately

a�ecting the result. However, we only use uncertainty types from our catalog introduced in

Section 5.7 that were classi�ed by multiple researchers. Furthermore, failing to accurately

annotate uncertainty sources only marginally a�ects the propagation as the propagation

in the DFD is type-agnostic, see Section 6.4
5
. Another threat to internal validity is accurate

modeling. For instance, the position of con�dentiality violations and uncertainty sources

can in�uence the validity of the accuracy (G5) and e�ort reduction (G6) metrics. To

mitigate these issues, we use evaluation scenarios with comprehensive documentation of

the software architecture that was already independently modeled in other work [23, 36].

Furthermore, we ensure that the uncertainty sources represent a mix of di�erent impact

locations, e.g., at sources and sinks of data �ows. Last, the size of the evaluation scenarios

can negatively impact the expressiveness of the metrics. Here, we choose the largest

available evaluation scenarios, i.e., the CoronaWarnApp with 21 components, resulting in

a DFD with 506 nodes, and MobilityAsAService with 18 components, resulting in a DFD

with 267 nodes. Both systems are non-trivial and appropriate for the evaluation.

External validity The external validity re�ects the generalizability of the evaluation

results to other cases or domains. Here, the biggest threat is the selection of evaluation

scenarios for both evaluating accuracy (G5) and e�ort reduction (G6). To address this, we

use evaluation scenarios of di�erent size and from di�erent domains, i.e., the health domain,

and the mobility domain. Furthermore, we ensure to include all �ve uncertainty types

introduced in Section 5.3. We argue that the quality of the uncertainty impact analysis

only depends on the selection and annotation of uncertainty sources, see the discussion

above, and does not depend on the software system, or its domain. The comparable results

of both evaluation scenarios support this claim.

Construct validity The construct validity re�ects whether the measurements are suitable

for representing the evaluation objectives. Similarly to the evaluation of Contribution

5
This concern has also been raised after presenting the uncertainty impact analysis at SEAMS ’23 in

Australia. Besides the type-agnostic uncertainty propagation in DFDs, the tooling r UIA checks the

validity of annotated uncertainty, which minimizes the impact of human error.

210

9.4. Evaluation of the Uncertainty-Aware Data Flow Analysis

C1, we apply a GQM-based evaluation plan [16, 17] to minimize the risk of collecting

unnecessary data. Furthermore, we use well-known metrics for binary classi�cation [198,

208] to measure accuracy (G5). These metrics have also been used to evaluate the accuracy

of related work and comparable analyses [233, 264]. Regarding the e�ort reduction (G6),

our evaluation is closely oriented on the evaluation of change impact analysis [46, 210].

Here, we adapt counting model elements a�ected by a change in the software architecture

and count DFD nodes that are a�ected by uncertainty. A similar adaptation has been

proposed to evaluate the e�ort reduction of architecture-based attacker propagation [106,

264, 267]. However, these metrics do not represent the manual modeling e�ort of software

architects. As discussed with the results of Goal G6, our analysis requires less modeling

than architecture-based con�dentiality analysis. Thus, reaching a comparable result in

e�ort reduction compared to con�dentiality analysis is su�cient.

Reliability The reliability re�ects the repeatability and whether the evaluation results

are dependent on the speci�c researchers. Similarly to the evaluation of Contribution

C1, the evaluation is performed by a single researcher. Here, we ensure the validity by

repeatedly having the results reviewed by other scientists [23, 200]. Furthermore, we

address the repeatability by providing a data set [98] that contains all raw evaluation data,

the evaluation scenarios, the analysis and interpretation of the results, and our tooling

r UIA. As mentioned earlier, this includes the previous version of our data �ow analysis

framework used for the impact analysis, see Section 7.2.

9.4. Evaluation of the Uncertainty-Aware Data Flow Analysis

In this section, we present the evaluation of the third Contribution C3, introduced in

Chapter 7. This contribution comprises four approaches to uncertainty-aware data �ow

analysis. The evaluation is based on the GQM plan presented in Section 9.1, and includes

the Goals G7 and G8. We use the evaluation scenarios introduced in Chapter 8. First, we

present the evaluation design. Afterward, we show and discuss the results for each goal

individually. We conclude with a discussion of threats to validity.

9.4.1. Evaluation Design

The evaluation of the third contribution C3 consists of investigating the scalability (G7)

and the accuracy (G8) of uncertainty-aware data �ow analysis. Regarding the scalability,

we use the evaluation scenarios of the CoronaWarnApp, presented in Section 8.5, and

MobilityAsAService, presented in Section 8.6. These scenarios comprise the largest software

systems, where scalability e�ects become more clearly visible. Using smaller software

systems is possible but not expedient. Regarding the accuracy, we use all six evaluation

scenarios. As already discussed, we consider this to be one of the most important properties

of security-oriented analyses. We use di�erent subsets of the scenarios for the �rst three

211

9. Evaluation

analysis approaches presented in Chapter 7, but we combine all six scenarios to evaluate

our most advanced approach, i.e., uncertainty impact-aware data �ow analysis.

For the evaluation of Goal G7, we apply the complexity formulas to evaluation scenarios.

These formulas describe how many TFGs an uncertainty-aware data �ow analysis has to

consider to identify all con�dentiality violations due to uncertainty. In Section 7.6, we

already discussed that the required number of TFGs relates to the type of analysis: Scenario-
aware analysis requires equal or more TFGs than graph-aware analysis that requires equal

or more TFGs than impact-aware analysis. The less TFGs an analysis requires, the better

the scalability [231]. However, this theoretical discussions lacks empirical evidence, which

includes a better understanding on the size of the actual di�erences in scalability. Put

simply, designing more advanced analysis approaches regarding scalability to gain one

percent better performance at design time is not expedient. To evaluate this, we introduce

uncertainty sources at random locations within the evaluation scenarios and measure the

required TFGs of the three analysis levels. By dividing the individual numbers of TFGs by

the number of uncertainty sources, we calculate the scalability of scenario-aware analysis

(M7.1.1), the scalability of graph-aware analysis (M7.1.2), and the scalability of impact-
aware analysis (M7.1.3). We repeat this for di�erent counts of uncertainty sources, from 1

to 25, in steps of 5. This enables us to draw conclusions on the growth of required TFGs.

Additionally, we repeat the measurement for primary uncertainty, secondary uncertainty,

and both, as the choice of the uncertainty types impacts the scalability, see Section 7.6.

This evaluation is automated using r Abunai and part of the data set [98].

For the evaluation of Goal G8, we individually consider the four analysis approaches

presented in Chapter 7, i.e., the accuracy of data �ow analysis under structural uncertainty

(Q8.1), data �ow analysis under environmental uncertainty (Q8.2), tracing uncertainty

in data �ow analysis (Q8.3), and uncertainty impact-aware data �ow analysis (Q8.4).

For all questions, we use the metrics of precision (M8.1.1, M8.2.1, M8.3.1, M8.4.1) and

recall (M8.1.2, M8.2.2, M8.3.2, M8.4.2). We calculate these metrics based on the provided

con�dentiality requirements and uncertainty sources, and the expected con�dentiality vio-

lations of the evaluation scenarios, see Chapter 8 and Section 9.4. To evaluate the data �ow

analysis under structural uncertainty (Q8.1), we use the TravelPlanner, DistanceTracker,
and OnlineShop evaluation scenarios. We model the uncertainty sources as design decisions

in PerOpteryx [143, 144] and investigate whether the software architecture candidates

contain con�dentiality violations. To evaluate the data �ow analysis under environmental

uncertainty (Q8.2), we use the TravelPlanner and the DistanceTracker evaluation scenarios,

which both use Role Based Access Control (RBAC) to ensure con�dentiality. We introduce

uncertainty into the access control properties and investigate the resulting con�dentiality

violations. To evaluate the tracing of uncertainty (Q8.3), we use the TravelPlanner, Dis-
tanceTracker, and OnlineShop evaluation scenarios. We express the uncertainty sources as

variation points in the variation model and compare the analysis results to the expected

results of the scenarios. Last, to evaluate the uncertainty impact-aware data �ow analysis

(Q8.3), we use all six evaluation scenarios, i.e., TravelPlanner, DistanceTracker, OnlineShop,

CoronaWarnApp, MobilityAsAService, and JPlag. We can directly use the described uncer-

tainty sources as input to the analysis, and investigate the scenario combinations that

were identi�ed by the analysis as states that violate con�dentiality. Further details on the

212

9.4. Evaluation of the Uncertainty-Aware Data Flow Analysis

Question Metric Result

Scalability (Q7.1) Scenario-aware (M7.1.1) 2.56e+06

Graph-aware (M7.1.2) 7.09

Impact-aware (M7.1.3) 5.50

Table 9.9.: Results of evaluation Goal G7 regarding the uncertainty-aware data �ow analyses’ scalability.

accuracy evaluation can be found in our corresponding publications [35, 101, 266]. All

prototypical implementations and all evaluation data is part of the data set [98].

9.4.2. Results and Discussion of the Scalability

The seventh Goal G7 targets the scalability of our approaches to uncertainty-aware con-

�dentiality analysis. This goal comprises one evaluation question with a total of three

metrics. Table 9.9 shows the results. Again, we split the presentation and interpretation.

The scalability (Q7.1) asks about the comparison of three levels of uncertainty-aware

con�dentiality analysis, as de�ned in Section 7.3. We randomly introduce uncertainty in

the two largest evaluation scenarios, i.e., the CoronaWarnApp and MobilityAsAService. We

calculate the complexity as introduced in Section 7.6 and divide the result by the number

of introduced uncertainty sources. The result shows how many TFGs are required to

analyze con�dentiality under uncertainty using the di�erent analysis approaches. As

discussed previously, this does not e�ect the identi�ed con�dentiality violations but

only the analysis complexity. First, we present the average number of additional TFGs

per uncertainty source in both evaluation scenarios. Using uncertainty scenario-aware

data �ow analysis (M7.1.1), we measure on average B20;018;8C~B24=0A8> = 2.56e+06, i.e.,

approximately 2.5 million TFGs for each modeled uncertainty source. Using graph-aware

data �ow analysis (M7.1.2), we measure on average B20;018;8C~6A0?ℎ = 7.09, which is

signi�cantly lower than the complexity of the scenario-aware analysis. Last, using impact-

aware data �ow analysis (M7.1.3), we measure on average B20;018;8C~8<?02C = 5.50. To

better understand the growth of required TFGs in the analysis, Figure 9.9 compares the

number of injected uncertainty sources to the number of TFGs in the CoronaWarnApp
evaluation scenario. Here, we di�erentiate between only considering primary uncertainty

or secondary uncertainty, and considering both. Note that the graph uses a logarithmic scale

to depict the number of TFGs. The same applies to Figure 9.10 that shows the scalability

results of the MobilityAsAService evaluation scenario. In both evaluation scenarios, we see

the rapid growth of the required TFGs for scenario-aware data �ow analysis. The resulting

numbers range from 16 TFGs for a single primary uncertainty in MobilityAsAService to

approximately 470 million TFGs to consider 25 uncertainties in the CoronaWarnApp. In

comparison to this, both the graph-aware and impact-aware analyses show slower growth.

For 25 uncertainties, the graph-aware approach needs 469 TFGs and the impact-aware

approach needs 237 TFGs in the CoronaWarnApp. MobilityAsAService shows similar results

with 89 and 57 TFGs, respectively. Last, the graphs also indicate the lack of a speed up

213

9. Evaluation

Primary Secondary Both

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

1e+03

1e+06

1e+09

Number of Uncertainties

N
um

be
r

of
 T

FG
s

Analysis Type Scenario-Aware Graph-Aware Impact-Aware

Figure 9.9.: Scalability results of the CoronaWarnApp evaluation scenario. Lower is better.

Primary Secondary Both

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

1e+02

1e+04

1e+06

1e+08

Number of Uncertainties

N
um

be
r

of
 T

FG
s

Analysis Type Scenario-Aware Graph-Aware Impact-Aware

Figure 9.10.: Scalability results of the MobilityAsAService evaluation scenario. Lower is better.

regarding primary uncertainty of the impact-aware analysis compared to the graph-aware

analysis. Here, di�erences only become visible when including secondary uncertainty, as

discussed in Section 7.6. All measured complexity values are part of the data set [98].

Regarding the scalability of scenario-aware analysis (M7.1.1), the results show the combi-

natorial explosion already discussed in the context of design space exploration [143]. We

also discussed this issue when introducing the di�erent approaches to uncertainty-aware

data �ow analysis in Chapter 7. For every uncertainty source—and every scenario of every

source—the scenario-aware analysis calculates the combination of all possible scenarios,

i.e., the Cartesian product. Afterward, all TFGs need to be analyzed for every combination.

Especially in larger software systems with many data �ows, this rapidly increases the

run time. However, also smaller systems are a�ected: The MobilityAsAService scenario

214

9.4. Evaluation of the Uncertainty-Aware Data Flow Analysis

Question Metric Result

Structural uncertainty (Q8.1) Precision (M8.1.1) 1.00

Recall (M8.1.2) 1.00

Environmental uncertainty (Q8.2) Precision (M8.2.1) 1.00

Recall (M8.2.2) 1.00

Tracing uncertainty (Q8.3) Precision (M8.3.1) 1.00

Recall (M8.3.2) 1.00

Impact-aware analysis (Q8.4) Precision (M8.4.1) 1.00

Recall (M8.4.2) 1.00

Table 9.10.: Results of evaluation Goal G8 regarding the uncertainty-aware data �ow analyses’ accuracy.

only has 8 TFGs compared to the 14 TFGs of the CoronaWarnApp. Still, for all 25 uncer-

tainty sources, the analysis requires approximately 270 million TFGs compared to 470

million TFGs. Both numbers are high enough to make the data �ow analysis framework

unsuitable [231]. Regarding the scalability of graph-aware analysis (M7.1.2), the number

of required TFGs is highly reduced. Using the information about depended uncertainties

in the same TFG and independent uncertainties in other TFGs, the majority of scenario

combinations can be safely rejected. This e�ect becomes visible in all non-trivial software

systems that comprise more than a single TFG. Here, our measurements imply that the

8 TFG of MobilityAsAService are su�cient for a highly reduced complexity. Regarding

the scalability of impact-aware analysis (M7.1.3), we see its relation to the occurrence

of primary and secondary uncertainty. The impact-aware analysis is able to consider

the uncertainty interaction between secondary and primary uncertainty, as introduced

in Section 7.3. Thus, the number of TFGs is not reduced when only including primary
uncertainty. Although the reduction when including secondary uncertainty is not as large

compared to scenario-aware analysis, it is still notable. On average, impact-aware analysis

requires only
5.50
7.09

= 0.78 times as many TFGs for the same result in the evaluated scenarios.

Here, the results also indicate that the reduction correlates to the number of TFGs of the

scenario. We conclude that the results are satisfying regarding the scalability comparison

(Q7.1) of uncertainty-aware data �ow analyses. Thus, we are able to de�ne scalable analy-

ses (G7). The results also empirically support the complexity reduction of more advanced

uncertainty-aware data �ow analysis, i.e., #� ≤ #� ≤ #(, see Section 7.6.

9.4.3. Results and Discussion of the Accuracy

The eighth and last Goal G8 focuses on the accuracy of the four approaches to uncertainty-

aware con�dentiality analysis, presented in Chapter 7. This goal comprises four evaluation

questions with a total of eight metrics. Table 9.10 shows the results. In the following, we

�rst present these results and discuss them afterward.

The accuracy of the data �ow analysis under structural uncertainty (Q8.1) asks about

the precision (M8.1.1) and recall (M8.1.2) of the �rst analysis approach, introduced in

215

9. Evaluation

Subsection 7.4.1. As discussed previously, we use the evaluation scenarios TravelPlanner,
DistanceTracker, and OnlineShop together with PerOpteryx [143, 144]. Although the intro-

ducing of the con�dentiality analysis requires PerOpteryx to analyze many architectural

candidates, see Subsection 7.4.1, all candidates with con�dentiality violations and also

all candidates without violations were correctly identi�ed. This results in a perfect score

of 1.0, both regarding precision and recall. The accuracy of the data �ow analysis under

environmental uncertainty (Q8.2) asks about the precision (M8.2.1) and recall (M8.2.2) of

the second analysis approach, introduced in Subsection 7.4.2. Here, we use the evaluation

scenarios TravelPlanner and DistanceTracker. The introduction of uncertainty in RBAC

produces the expected con�dentiality violations, i.e., the perfect scores of 1.0 for precision

and recall. The accuracy of the approach to trace uncertainty in data �ows (Q8.3) asks

about the precision (M8.3.1) and recall (M8.3.2) of the third analysis approach, introduced

in Subsection 7.5.1. The introduction of uncertainty as variation points in the variation

creation [168] of the evaluation scenarios TravelPlanner, DistanceTracker, and OnlineShop,

produces variants of the software architecture, which partially violate con�dentiality. The

analysis is able to correctly identify these variations and traces identi�ed con�dentiality

violations back to the originating uncertainty sources. Thus, it reaches both a precision and

recall of 1.0. Last, the accuracy of the uncertainty-impact aware data �ow analysis (Q8.4)

asks about the precision (M8.4.1) and recall (M8.4.2) of the fourth analysis approach, intro-

duced in Subsection 7.5.2. Here, we directly model the uncertainty sources as a �rst-class

concern of all six evaluation scenarios, i.e., TravelPlanner, DistanceTracker, OnlineShop,

CoronaWarnApp, MobilityAsAService, JPlag. As discussed previously, we provide the most

comprehensive accuracy evaluation for this approach as it represents our most advanced

analysis. In total, we identi�ed 221 con�dentiality violations due to uncertainty, which

resulted in a precision of 1.0 and a recall of 1.0.

All four evaluation questions of Goal G8 use the same metrics, i.e., precision and recall.
Moreover, all measurements show the perfect result of 1.0, both regarding precision and

recall. For the sake of simplicity, we jointly discuss all results instead of repeating the

interpretation for all four questions (Q8.1 – Q8.4). All presented uncertainty-aware data

�ow analysis approaches are based on the data �ow analysis framework [36], presented in

Section 7.2. The framework itself follows the data �ow analysis concept of Seifermann

[233] and shows equal results regarding identi�ed con�dentiality violations [231], i.e., a

precision and recall of 1.0. The accuracy evaluation of Seifermann [233], which partially

uses the same evaluation scenarios as used in our evaluation, results in a perfect accuracy of

1.0. Put simply, to validate the accuracy of our analysis approaches, it is su�cient to show

that we did not impair the analysis quality by introducing uncertainty into the modeling

and analysis procedure. The consistent results of 1.0 for both precision and recall support

this. Note that this does not resemble real-world accuracy measurements using case studies,

as discussed in Chapter 8. Related work uses similar approaches to accuracy evaluation

showing perfect results [38, 234, 236, 264, 265, 267]. We conclude that the results are

satisfying regarding the accuracy of data �ow analyses under structural uncertainty (Q8.1)

and environmental uncertainty (Q8.2), and also regarding tracing uncertainty (Q8.3) and

the uncertainty-impact aware analysis (Q8.4). Thus, our approaches to uncertainty-aware

data �ow analysis are accurate (G8).

216

9.4. Evaluation of the Uncertainty-Aware Data Flow Analysis

9.4.4. Threats to Validity

We conclude the evaluation of the third Contribution C3 with a discussion of the threats

to validity of Goal G7 and G8. Similarly to the previous evaluation, we use evaluation

scenarios, described in Chapter 8. We follow the guidelines of Runeson and Höst [212],

who propose to discuss internal validity, external validity, construct validity, and reliability.

This addresses the lack of guidelines in threats to validity discussions [142].

Internal validity The internal validity re�ects whether the evaluation results depend only

on the factors examined, without being in�uenced by other factors. Regarding Goal G7, the

location of the injected uncertainty sources could in�uence the measured scalability results.

However, especially for the larger measurements, we argue that using randomly chosen

locations is su�cient. Additionally, the identi�ed e�ect size is large, with speedups by

orders of magnitude. Although we cannot eliminate this risk, we �nd its impact negligible.

Regarding GoalG8, the biggest threat is the manual creation of the reference output, i.e., the

gold standard of the evaluation scenarios. We apply several strategies to mitigate this threat.

First, we use a mixture of evaluation scenarios from other work [133, 135, 203, 233, 234,

236], e.g., TravelPlanner and DistanceTracker, and self-de�ned evaluation scenarios based

on real-world software systems, e.g., CoronaWarnApp [119], and Jplag [199, 214]. Second,

we use publicly available documentation to ensure the validity of con�dentiality violations

and sources of uncertainty. Third, we continuously use the data �ow analysis framework

without considering uncertainty to validate identi�ed con�dentiality violations. Fourth,

the simpler scenarios are small enough to manually validate identi�ed results. Another

threat to internal validity is the extension of PerOpteryx [144] using the con�dentiality

analysis [266], which could impact the design space exploration algorithm. We address

this by only using the dedicated extension mechanism of PerOpteryx [143].

External validity The external validity re�ects the generalizability of the evaluation

results to other cases or domains. Regarding Goal G7, we only consider the biggest evalu-

ation scenarios CoronaWarnApp and MobilityAsAService. We argue that this is su�cient,

especially in large scenarios where combinatorial explosion can easily lead to scalabil-

ity problems. Thus, the su�cient scalability of graph-aware and impact-aware analysis

should also apply to simpler scenarios. Similarly to the evaluation of Contribution C2,

the biggest threat for Goal G8 is the selection of evaluation scenarios. We address this

by ensuring a good mixture of minimal examples, e.g., TravelPlanner or DistanceTracker,
and comprehensive scenarios, e.g., CoronaWarnApp and MobilityAsAService. All scenarios

show di�erent numbers regarding the size of the architectural model, the extracted DFDs,

modeled uncertainty sources and identi�ed con�dentiality violations. Furthermore, they

originate from di�erent existing work and existing software systems from a multitude

of domains, i.e., mobility, health, sports, e-commerce, and plagiarism detection. They

comprise all �ve uncertainty types, introduced in Section 5.3. Similarly to the previous

evaluation, we argue that the quality of uncertainty-aware data �ow analysis does not

depend on the domain and only relates to DFDs and considered uncertainty sources.

217

9. Evaluation

Construct validity The construct validity re�ects whether the measurements are suitable

for representing the evaluation objectives. Similarly to the previously presented evaluation

of Contributions C1 and C2, we apply a GQM-based evaluation plan [16, 17]. Regarding

Goal G7, the metrics for scalability depend on the complexity calculation, introduced

in Section 7.6. We argue that using these formulas is a valid approach as they directly

represent the analysis algorithms presented in Chapter 7. However, we do not provide

formal proof but empirically evaluate the complexity using the evaluation scenarios. We

also do not collect runtime information as a previous study already indicated a high

correlation between the number of TFGs and the analysis execution time. We argue that

measuring the required number of TFGs to consider uncertainty using the evaluation

scenarios is su�cient. Nevertheless, the applied metrics are not suitable for external

comparisons as they lack normalization. We only focus on the comparison of the scalability

results of our analysis approaches. Regarding Goal G8, we use precision and recall to

measure accuracy. Both represent well-known metrics of binary classi�cation [198, 208]

that are commonly used to evaluate accuracy in software architectural research [142].

Reliability The reliability re�ects the repeatability and whether the evaluation results are

dependent on the speci�c researchers. In contrast to the previous parts of the evaluation,

the reliability of the results of Goal G7 and G8 is not threatened by the fact that the

evaluation is only performed by a single researcher. Here, all measurements were fully

automated using the provided tooling, i.e., r UIA and r Abunai. Nevertheless, to

increase repeatability, we provide all modeled uncertainties, all raw evaluation data, the

prototypical implementation, and all calculations as part of our data set [98].

9.5. Summary and Outlook

In this chapter, we presented the evaluation of all three Contributions C1, C2, and C3.

First, we introduced a comprehensive GQM-plan comprising 8 goals, 19 questions, and 32

metrics. Afterward, we explained the evaluation design, and presented and interpreted

the evaluation results separately for each contribution. Table 9.11 shows an overview of

all metrics, thereby combining the individually presented results of all Goals G1 – G8. In

the following, we summarize the results and also present key �ndings of the evaluation.

Our �rst ContributionC1 comprises a classi�cation of uncertainty regarding con�dentiality

and a catalog of uncertainty sources. We evaluated the classi�cation structure’s suitability

(G1), its applicability (G2), and justi�ed its purpose (G3), following the evaluation method

of Kaplan et al. [132]. Additionally, we evaluated the usability (G4) of our catalog. With

the classi�cation, we enable a more precise description of uncertainty with regard to

con�dentiality. With the tool-supported catalog approach r ARC
3
N, we intended to

enhance the usability of the classi�cation and also to address the UAP. The results of the

evaluation indicate that both the classi�cation and the catalog reach these goals. With the

classi�cation, we provide common terminology that �ts the required abstraction, e.g., with

a high laconicity (M1.1.1) of 95%, or a clearly positive classi�cation delta (M3.3.1) of 0.54,

218

9.5. Summary and Outlook

Goal Question Metric Result

G1 Generality (Q1.1) Laconicity (M1.1.1) 0.95

Lucidity (M1.1.2) 0.70

Appropriateness (Q1.2) Completeness (M1.2.1) 0.97

Soundness (M1.2.2) 1.00

Orthogonality (Q1.3) Orthogonality (M1.3.1) 0.99

G2 Reliability (Q2.1) Annotator consensus (M2.1.1) 0.69

Correctness (Q2.2) Recall (M2.2.1) 0.73

Ease of use (Q2.3) SUS (M2.3.1) 68.25

G3 Relevance (Q3.1) Fraction of relevant classes (M3.1.1) 1.00

Novelty (Q3.2) Innovation (M3.2.1) 0.49

Adaptation (M3.2.2) 0.51

Signi�cance (Q3.3) Classi�cation delta (M3.3.1) 0.54

G4 Identi�cation (Q4.1) Correctness (M4.1.1) 0.88

Collaboration (Q4.2) Correctness (M4.2.1) 0.65

Ease of use (Q4.3) SUS (M4.3.1) 69.71

Average rating (M4.3.2) 3.1/4
G5 Accuracy (Q5.1) Precision (M5.1.1) 0.78

Recall (M5.1.2) 1.000

F1 score (M5.1.3) 0.88

G6 E�ort reduction (Q6.1) A0C8>02CD0; (M6.1.1) 0.11

A0C8>8<?02C (M6.1.2) 0.14

G7 Scalability (Q7.1) Scenario-aware (M7.1.1) 2.56e+06

Graph-aware (M7.1.2) 7.09

Impact-aware (M7.1.3) 5.50

G8 Structural (Q8.1) Precision (M8.1.1) 1.00

Recall (M8.1.2) 1.00

Environmental (Q8.2) Precision (M8.2.1) 1.00

Recall (M8.2.2) 1.00

Tracing (Q8.3) Precision (M8.3.1) 1.00

Recall (M8.3.2) 1.00

Impact-aware (Q8.4) Precision (M8.4.1) 1.00

Recall (M8.4.2) 1.00

Table 9.11.: Joint results of all evaluation goals, showing all questions, metrics, and results. This includes the

evaluation Goals of structure’s suitability (G1), applicability (G2), purpose (G3), usability (G4), accuracy

(G5), e�ort reduction (G6), scalability (G7), and accuracy (G8).

and that is usable to name and describe uncertainty sources with regard to con�dentiality,

as seen with a recall (M2.2.1) of 73%. The catalog further supports the identi�cation and

description of uncertainty in architectural models with a correctness (M4.1.1) of 88%.

Both are usable, as seen with a SUS (M2.3.1) of 68.25/100, or an average rating (M4.3.2)

of 3.1/4. Based on the qualitative feedback of the participants of the two conducted user

studies, combining both is expedient. We �nd:

219

9. Evaluation

� Finding: Both the uncertainty classi�cation and the catalog of uncertainty

sources support software architects in identifying, describing, and understand-

ing software-architectural uncertainty with regard to con�dentiality. However,

combining both represents the most promising approach.

Our second Contribution C2 is an architecture-based uncertainty impact analysis to predict

con�dentiality violations. We evaluated the accuracy (G5) and e�ort reduction (G6) of the

impact analysis compared to manual con�dentiality analysis. With the impact analysis

tool-supported with r UIA, we aim to accurately predict con�dentiality violations with

only a little overestimation but without any underestimation. Furthermore, we want to

support software architects by directing their attention to problematic parts of the software

system and thereby reducing the required e�ort. The evaluation results indicate that we

have reached both goals. The analysis reaches the perfect recall (M5.1.2) of 100% while

maintaining a precision (M5.1.1) of 78%. The required manual e�ort is highly reduced

(M6.1.2), as software architects only need to consider 14% of DFD nodes on average, which

is close to the optimal actual impact set ratio (M6.1.1) of 11%. In sum, we �nd:

� Finding: The uncertainty impact analysis accurately predicts con�dentiality

violations due to uncertainty with only little overestimation. Although the eval-

uation scenarios intentionally contained a multitude of con�dentiality violations,

only every tenth DFD node was a�ected. This underlines the challenge of identi-

fying con�dentiality violations and the need for tool-supported analyses.

Our third Contribution C3 comprises four approaches to uncertainty-aware data �ow

analysis to identify con�dentiality violations due to uncertainty. We evaluated the scalabil-

ity (G7) of the three central awareness levels of uncertainty in data �ow analysis, and the

accuracy (G8) of our four analysis approaches. Our goal is to identify all con�dentiality

violations due to uncertainty while maintaining reasonable scalability. The evaluation

results indicate that this is not trivial. Our �rst approach, scenario-aware data �ow analysis

(M7.1.1), requires on average 2.5 million additional TFGs per uncertainty in our evalua-

tion with 1 to 25 randomly injected uncertainty sources. This severe lack of scalability

is discussed as the combinatorial explosion in the context of design space exploration

[143]. However, both the graph-aware (M7.1.2) and the impact-aware (M7.1.3) data �ow

analysis requires signi�cantly less TFGs per uncertainty source, averaging at 7.09, and

5.50, respectively. All four analysis approaches reach the perfect precision and recall, as

expected due to the testing conditions. In sum, we �nd:

� Finding: The four uncertainty-aware data �ow analysis approaches accurately

identify con�dentiality violations due to uncertainty. However, only graph-aware

and impact-aware analyses are applicable due to the severe lack of scalability

of uncertainty scenario-aware data �ow analysis. This underlines the need to

provide scalable analysis approaches tailored to con�dentiality.

Overall, we �nd the evaluation results satisfying. Some measurements represent the perfect,

or nearly perfect results. Examples are the accuracy evaluation of uncertainty-aware

220

9.6. In Simpler Words

data �ow analysis (G8), the recall of uncertainty impact analysis (G5), or the structure’s

suitability (G1) and purpose (G3) of the classi�cation. Other metrics indicate room for

improvement despite being acceptable. For instance, the precision of uncertainty impact

analysis G5, or the usability of the �rst Contribution C1 could be enhanced. However,

all contributions represent novel approaches to identifying, describing, and analyzing

uncertainty with regard to con�dentiality. Thus, we �nd near-optimal and partially perfect

results to be su�cient and leave further optimization to future work. We �nd:

� Finding: The evaluation provides evidence regarding the su�cient quality

of this dissertation’s contributions. This indicates that the classi�cation of un-

certainty, the catalog of uncertainty sources, the uncertainty impact analysis,

and the uncertainty-aware data �ow analyses support software architects in the

architecture-based inspection and assessment of con�dentiality under uncertainty.

This chapter comprises the evaluation of all three contributions, which were presented in

the last three chapters. The �rst contribution is introduced in # Chapter 5: Identi�ca-
tion and Classi�cation of Uncertainty Regarding Con�dentiality. The second con-

tribution is shown in # Chapter 6: Uncertainty Propagation to Enable Uncertainty
Impact Analysis. The third contribution is presented in # Chapter 7: Uncertainty-
Aware Data Flow Analysis to Identify Con�dentiality Violations. An overview of

the interplay of all contributions can be found in # Chapter 4: Overview.

9.6. In Simpler Words

This thesis has three contributions. First, a classi�cation and catalog approach of uncer-

tainty sources, which help software architects identify and understand uncertainty sources.

Second, an uncertainty impact analysis predicts potential con�dentiality violations under

uncertainty. Third, uncertainty-aware data �ow analyses that identify con�dentiality

violations due to uncertainty. All contributions are meant to enlarge our current knowl-

edge about the relationship between uncertainty and con�dentiality and also to support

software architects. In this chapter, we conduct a comprehensive evaluation to investigate

whether the contributions represent an enhancement compared to the state of the art.

In an evaluation of this size, many things can go wrong. One common mistake is the

collection of meaningless data to validate the contributions. To counteract this, we use

a so-called Goal Question Metric (GQM)-plan. Here, goals represent the qualities, we

want to show, e.g., that our analysis is accurate and usable. To investigate these goals, we

answer evaluation questions, e.g., whether users were happy with our approach. Metrics

quantify the answers, e.g., by counting how many users correctly describe uncertainty

sources using our classi�cation. In total, our evaluation has 8 goals, 19 questions, and

32 metrics. To gather the required data, we conducted two user studies, in which real

software architects, researchers, and students used our contributions. Additionally, we

use the evaluation scenarios, presented in the previous chapter.

221

9. Evaluation

It is very important that an evaluation is comprehensible for other researchers. Thus,

this chapter describes in detail how the evaluation is designed, how the studies were

conducted, and how the results were calculated. Here, we distinguish between the objective

measurements and our subjective interpretation of the measurements. We also discuss

potential threats to validity, i.e., what could have gone wrong during the evaluation and

to which extent this a�ects the trustworthiness of our results. Last, we provide a data set

[98] that contains all raw data, and all implementations and calculations. This enables

other researchers to review our results or repeat the evaluation themselves.

Overall, the results of our evaluation are satisfying. They are not perfect—but they are

good enough for us to believe that we created something that actually surpasses the state of

the art. The evaluation provides evidence that our classi�cation helps to better understand

and describe uncertainty and that our catalog approach complements this very nicely.

We also �nd that the uncertainty impact analysis does not miss con�dentiality violations

when predicting an uncertainty source’s impact. However, it could be a little more precise,

as it also yields incorrect con�dentiality violations. Still, such overestimation is common

among such analyses. Last, we see an excellent accuracy of our uncertainty-aware data

�ow analyses. All analysis approaches correctly identify all con�dentiality violations due

to uncertainty. We also see how important the scalability of an analysis is. Only our more

advanced analysis approaches scale well enough for a higher degree of uncertainty within

a software system. This so-called combinatorial explosion is a common problem of design

space exploration analyses. Our evaluation indicates that our proposed solutions work

very well regarding con�dentiality. In sum, we are happy with these results—they took us

a total of four years to collect.

222

Part IV.

Epilog

10. Related Work

In this chapter, we present other work that is related to our contributions
1
. As the title

of this thesis implies, our contributions revolve around three central topics: Uncertainty,

software architecture, and con�dentiality. These topics represent the foundations of our

work, presented in Chapter 2. Related work exists in all intersections of these topics. Thus,

we structure related work by iteratively investigating work in these areas.

The remainder of this chapter is structured as follows: We summarize work from the

software engineering and software architecture research community that also addresses

uncertainty. Then, we focus on architecture-based approaches to security and con�den-

tiality. Last, we investigate uncertainty-aware approaches to con�dentiality that do not

require architectural abstraction. This dissertation is at the center of these areas, combining

aspects of con�dentiality, software architecture, and uncertainty-related research.

� Literature: This chapter is based on the following (co-) authored publications:

[EMLS 2021], [ECSA-C 2021], [IEEE SEAA 2022], [Springer ECSA 2022],

[Springer ICETE 2023], [IEEE ICSA-C 2023], [IEEE/ACM SEAMS 2023],

[IEEE/ACM SEAMS 2024], [Springer ECSA 2024], [ACM/IEEE MODELS-C 2024]

10.1. Uncertainty and So�ware Architecture

The intersection of research on uncertainty and software architecture represents the

largest �eld investigated in this chapter. This is no surprise, as also the vast majority of our

publications were presented at conferences and workshops that belong to these research

communities. Furthermore, uncertainty is often discussed using model-based approaches

common in software architectural research [243, 255]. We start by giving an overview of

surveys and research roadmaps of both communities. Afterward, we brie�y summarize

publications on uncertainty taxonomies and approaches related to Self-Adaptive Systems

(SASs). Then, we summarize the comprehensive work that has been conducted to optimize

software architectures or to use architectural knowledge in uncertainty-aware analysis.

Another relation of both areas are design decisions, as already discussed with the cone of
uncertainty [167], see Section 2.1. Last, we summarize work that focusses on uncertainty

management and sharing architectural knowledge.

1
We are well aware of the advances of generative arti�cial intelligence in summarizing research articles.

Therefore, we assume that handwritten sections on related work—such as this one—could soon become

obsolete. Thus, we focus on providing an understandable overview.

225

10. Related Work

10.1.1. Surveys and Research Roadmaps

Recently, two large surveys were conducted within the Self-Adaptive System (SAS) com-

munity that are related to our work. Troya et al. [255] conducted a Systematic Literature

Review (SLR) and the modeling of uncertainty. They investigate 123 primary studies to

better understand the notions and formalisms used to represent uncertainty. Furthermore,

they discuss when uncertainty is analyzed and whether such analysis is tool-supported.

They present a comprehensive collection of formalisms used to represent uncertainty, e.g.,

variability models, fuzzy logic, or temporal logic. Their results indicate a lack of analysis

approaches that are able to handle heterogeneous uncertainty types, such as presented in

Section 6.7. They also highlight the need for consolidated modeling solutions, as currently

driven with the Object Management Group (OMG) Precise Semantics for Uncertainty

Modeling (PSUM) [184] standard. Furthermore, they mention the need of tool-supported

processes, which we address with r Abunai, r UIA, and r ARC
3
N. Regarding design

time analyses like the one presented in this thesis, the most common approach are vari-

ability models, such as the uncertainty meta model presented in Subsection 7.5.2. We

conclude that our contributions use techniques well-known from the state of the art, but

surpass related work by providing comprehensive modeling support for heterogeneous

uncertainty and tool-supported analyses.

Hezavehi et al. [115] present an overview of the research community based on ques-

tionnaires. In two stages, they investigate uncertainty concepts, sources, methods, and

challenges. Their results motivate the design time analysis of uncertainty, which includes

both uncertainty sources internal and external to the system under study. They state that

“only when enough knowledge is not available at design time, [. . .], uncertainty handling

should be postponed to run-time” [115]. Moreover, they �nd that the current state of the

art lacks in including non-functional requirements both as optimization goal as well as side

e�ects. We address this shortcoming and the problem of dealing with concurrent sources

of uncertainty in Chapter 6 By providing a procedure to handle uncertainty in Section 4.1

and collecting uncertainty sources in Section 5.7, we also partially address the challenges

of consolidating knowledge, providing guidelines, and dealing with unanticipated change.

Last, the authors present an initial reference process that shows many activities that are

also contained in the procedure presented in Section 4.1, e.g., uncertainty identi�cation,

modeling, and propagation. Calinescu et al. [47] provide the �ndings of another survey

in the SASs community, focussed on understanding uncertainty. They also highlight the

challenges of dealing with unanticipated change and enhancing the explainability of SASs.

With r ARC
3
N, we provide a step towards addressing these challenges in Section 5.6. We

conclude that our approach �ts current research challenges.

Research roadmaps light current research directions and provide agendas and research

challenges. Here, De Lemos et al. [63] describe a general roadmap regarding the research

on SASs. They especially highlight the challenge of the design space’s size. We discussed

this issue and how to address the combinatorial explosion regarding data �ow analysis

and con�dentiality in Section 7.6. To also at least partially tackle the identi�ed challenge

regarding processes, we describe a procedure with activities and roles in Section 4.1.

226

10.1. Uncertainty and Software Architecture

More recently, Weyns et al. [273] describe their �ndings on current challenges regarding

uncertainty management. They highlight the need for understanding uncertainty and

providing end-to-end approaches. We present a tailored classi�cation in Section 5.3, and

a procedure that starts at the identi�cation of uncertainty in Chapter 5 and ends after

analyzing issues due to uncertainty in Chapter 7. Thereby, we address these challenges

regarding con�dentiality as a non-functional requirement.

10.1.2. Uncertainty Taxonomies and Classifications

To better understand uncertainty, researchers created several taxonomies [41, 48, 71, 162,

184, 195, 202, 263]. Walker et al. [263] present a taxonomy of uncertainty using three

dimensions. The location describes where the uncertainty can be found, e.g., in the model

input or context. The nature distinguishes between epistemic (i.e., lack of knowledge) and

aleatory (i.e., natural variability) uncertainty. Last, the level describes how much is known

about the uncertain in�uence. Although this taxonomy has been the baseline for many

others, it does not speci�cally aim to describe software-related uncertainty. Perez-Palacin

and Mirandola [195] build on this classi�cation in the context of SASs. They thereby adjust

the dimension location to better �t software models. Bures et al. [41] adapt this taxonomy

again to “�t the needs of uncertainty in access control” [41]. Although this work only

considers access control in Industry 4.0 scenarios, it is also a good foundation for our

classi�cation, presented in Section 5.3. Esfahani and Malek [71] describe characteristics

of uncertainty and hereby focus on the variability and reducibility of di�erent sources of

uncertainty. They highlight the problem of uncertainty in the environment of a software

system, e.g., due to the deployment. Mahdavi-Hezavehi et al. [162] propose a classi�cation

framework of uncertainty. They aim at architecture-based, SASs but do also not consider

security, privacy, or con�dentiality. Also related is the uncertainty template by Ramirez et

al. [202]. They present a scheme to describe uncertainty sources for dynamically adaptive

systems in requirements, design, and runtime. Due to the di�erent scope, they describe

uncertainty in software architecture as inadequate design which is not precise enough to

identify the impact of software-architectural [104] uncertainty on con�dentiality. Still,

they also list unexplored alternatives and misinformed trade-o� analysis which motivates

our work. Armour [11] presents the order of ignorance which also in�uenced many of the

aforementioned taxonomies, e.g., the work of Perez-Palacin and Mirandola [195].

More recently, the OMG PSUM [184] standard represents a joint e�ort towards the stan-

dardization of terminology to describe uncertainty. However, at the time of writing, this

still represents a work in progress. A more in-depth discussion of related classi�cations can

be found in Subsection 5.2.3. There, we not only show in detail all existing dimensions but

also where we adapt or innovate on the state of the art. This question is also part of our third

evaluation goal G3, presented in Section 9.2. We conclude that there has been a substantial

e�ort in the last decades to classify uncertainty. Based on the comprehensive �ndings of

related work we present a novel classi�cation tailored to con�dentiality. Revisiting related

work underlines both the need for tailored classi�cation systems and the appropriateness

of our classi�cation to con�dentiality, see Subsection 5.2.3 and Section 9.2.

227

10. Related Work

10.1.3. Architecting Self-Adaptive Systems

As discussed in Section 2.1 and in Section 5.2, uncertainty is central topic in the SASs

research community. However, the software architectures considered in this thesis are

not self-adaptive, and further research is required to understand the implications of our

�ndings for such software systems completely. Nevertheless, we brie�y summarize related

work in this �eld.

The Rainbow framework by Garlan et al. [82] enables architecture-based self-adaptation.

The architecture layer comprises an adaptation engine and logic for constraint evaluation

to monitor the runtime system and to adapt in case of occurring issues, e.g., regarding

the system performance. As this evaluation is model-based, we argue that our approach

could be integrated into this framework to simplify its use at runtime. Proper modeling

and analysis support—such as the one presented in this thesis—is required to identify

con�dentiality violations [226, 233]. In another publication, the authors present the

Znn.com system to evaluate the Rainbow framework. We build on this software system to

present our approach to addressing the UIP in Section 6.7.

Andersson et al. [8] present modeling dimensions of SASs, i.e., variation points of said

systems. They distinguish four groups of dimensions: Goals, changes, mechanisms, and

e�ects. In the scope of this work and the already discussed uncertainty classi�cations, this

can be seen as a more general description of the underlying challenges of SASs. Using

our terminology, uncertainties causing changes have sources and types, as described in

Section 5.2. Here, our classi�cation describes a small subset of these dimensions in more

detail, justi�ed by the purpose of conducting con�dentiality analysis. This underlines the

relation of our work to SASs, as already illustrated in recent publications [49, 273].

Whittle et al. [275] present RELAX, an approach targeted at considering uncertainty

in requirements engineering of SASs. By weakening requirements depending on the

environmental conditions monitored during runtime, self-adaptation can be achieved in a

structured manner. The authors argue that, compared to ad-hoc approaches, considering

uncertainty in requirements helps to describe clear adaptation boundaries and to ensure

invariants. However, this approach does not consider the development of the system

nor provides mechanisms to satisfy the weakened requirements. In addition, it can only

cope with environmental uncertainty that is known during formulating the requirements.

Nevertheless, we argue that revisiting con�dentiality requirements under uncertainty

represents a promising research direction for future work.

10.1.4. Architecture Evaluation Under Uncertainty

The topic of architecture evaluation under uncertainty represents the most comprehensive

section of related work. Numerous approaches [4, 70, 72, 144, 159, 261] have been proposed

to evaluate and optimize software architectures. They often refer to the variability or

inherent uncertainty in software architecture as design space exploration, which can also be

described as “searching better or even optimal designs” [143]. Sobhy et al. [243] conducted

228

10.1. Uncertainty and Software Architecture

a SLR comprising 48 primary studies on this topic. They highlight the focus on design

time, which matches our approach. We summarize the most related approaches.

PerOpteryx [143, 144, 163] is a model-based approach to optimize software architectures

regarding quality properties like performance, cost, or reliability. Koziolek et al. [144]

employ evolutionary optimization to �nd Pareto-optimal architectural candidates. To

assess the quality of the candidates, they use the Palladio approach, introduced in Sec-

tion 2.4. However, there is no support for con�dentiality, although there is already a

PerOpteryx extension for security [45]. In contrast to our approach, they modeled these

by a concept of concerns. These concerns describe which design decisions are dependent

on each other. In our analysis we focus on the direct impact on con�dentiality. Similarly to

the relation to Rainbow [82], we argue that our approach can be incorporated or combined

with PerOpteryx. We demonstrated this while de�ning a scenario-aware data �ow analysis

regarding structural uncertainty in Section 7.4.

Esfahani et al. [70] present GuideArch, an approach to explore the architectural solution

space under uncertainty. This shall enable software architects to identify critical design

decisions. They apply fuzzy math to represent uncertainty and its impact on the software

architecture. This enables the comparison of architectural candidates and the exploration

of the solution space. Although this approach considers uncertainty and fuzziness on the

architectural abstraction level, it does not consider con�dentiality or other privacy-related

quality properties. By applying fuzzy methods in graph-aware data �ow analysis, we found

that their expressiveness is limited regarding con�dentiality, which is hard to quantify, see

Section 7.4. Thus, we argue that the application of GuideArch to analyze con�dentiality is

not straightforward.

Another design space exploration tool is ArcheOpterix by Aleti et al. [4]. It can also

optimize a given architecture for multiple criteria using evolution techniques and design

constraints. However, similarly, it does not support a con�dentiality analysis, and the

design space modeling is more restrictive. The quality attributes of “safety, reliability,

security, performance, timeliness, and resource consumption” [4] are only considered to

be future work for ArcheOpterix. At the time of writing, we were unable to �nd analysis

extensions suitable for security, privacy, or con�dentiality. Vanherpen et al. [261] also

present an approach to model-based design space exploration. They present a pattern

catalog of techniques known from architecture optimization but do not focus on analysis

support. Gerasimou et al. [85] present EvoChecker, a search-based approach employing

evolutionary algorithms in automated model synthesis. They focus on quality of service

properties like reliability, response time, and cost. In sum, design space exploration

approaches are versatile, but do often not support security-related attributes but focus, e.g.,

on performance. While these approaches can analyze a wide variety of quality properties,

they are not appropriate to consider con�dentiality as they lack the required expressiveness

to consider data processing and data �ow constraints.

Last, there is a relation to the topics of variability, product lines, and testing, as they share

similar challenges regarding the size of the design space and combinatorial explosion,

as discussed in Section 7.6. Here, Abbas et al. [1] propose to model the variability in

quality concerns, thereby expressing what does vary how and for which reason. This

229

10. Related Work

shall reduce the number of required quality attribute scenarios. Another approach is the

combination of design models and test models to minimize testing e�orts while facing

feature interaction and ensuring a comprehensive coverage of interactions. Oster et al.

[191] combine pairwise feature generation with model-based testing and Lochau et al. [156]

combine feature models and state charts that represent test models. The challenge of feature

interactions is comparable to dealing with uncertainty interactions, see Section 6.7. By

employing the notion of independent Transpose Flow Graphs (TFGs), we can minimize the

required analysis e�ort due to interacting uncertainties, see Section 7.2. Here, mapping the

uncertainty model to the architectural model to minimize the analysis e�ort is comparable

to the mapping applied in related work. We require full coverage of all interactions on

a single TFG, as a missing variation could cause missed con�dentiality violations due to

uncertainty, see the discussion of recall in Section 9.1.

10.1.5. Architecture-Based Analysis

Besides automatically optimizing software architectures proposed in the previous para-

graphs, architectural models are often used as a means to analyze the quality of software

architectures or to help in the design process. These approaches are closely related to

this thesis as we also build on the architectural model to analyze con�dentiality. In the

following, we summarize related architecture-based analyses.

When considering architectural models as a baseline for uncertainty analysis, we �rst

have to address the question of incorporating uncertainty into the model. Here, Garlan

[80] proposed already more than a decade ago to consider uncertainty as a �rst-class

entity. There are numerous notations for incorporating uncertainties of di�erent types

into software models [255]. For instance, SysML [183] and the Uni�ed Modeling Language

(UML) MARTE Pro�le [185] provide stereotypes and properties to represent some types

of uncertainty, especially measurement uncertainty. However, existing notations allow

modeling mostly homogeneous uncertainties, i.e., of the same type. The aforementioned

PSUM standard [184] also provides a metamodel for representing di�erent types of uncer-

tainty but is still a work in progress. Regarding measurement uncertainty, Bertoa et al. [28]

propose its inclusion into primitive data types of UML models. Our modeling approach of

uncertainty and our distinction between �ve central uncertainty types is also inspired by

the aforementioned work, see Subsection 5.2.3. As discussed in Section 5.3 and Section 7.5,

we can express all identi�ed uncertainty sources [103] as part of the architectural model.

Famelis and Chechik [74] introduce DeTUM, which stands for design time uncertainty

management. This tool-supported approach handles uncertainty using partial models.

It introduces uncertainty in the start phase and then resolves it in later stages. They

also refer to open design decisions as a source of uncertainty, similarly to the cone of
uncertainty [167], see Section 5.2. However, the authors do not mention security-related

quality attributes like con�dentiality. They explicitly mention the requirement of external

support to assess the impact of uncertainty—as we o�er it with our work.

230

10.1. Uncertainty and Software Architecture

Goseva-Popstojanova and Kamavaram [93] present an approach for architecture-based

reliability analysis under uncertainty. Here, values such as the probability that a particular

component is used or the reliability of a component contribute to the analysis of uncertainty.

Using Monte Carlo simulation, the authors can analyze how uncertainty propagates from

model parameters into reliability estimations. Although we investigate another quality

property and use data �ow analysis instead Monte Carlo simulation, we argue that our

method is comparable. Both approaches use appropriate architectural models and derive

the impact of uncertainty. However, we argue that con�dentiality and reliability as quality

properties di�er fundamentally. Therefore, the approach is not suitable for detecting

con�dentiality breaches, and we are not able to analyze reliability. In sum, there exist

many approaches to model and analyze uncertainty regarding other quality properties of

software architectures. However, they do not explicitly take con�dentiality into account.

10.1.6. Architectural Design Decisions and Uncertainty

Architectural Design Decisions (ADDs) are related to uncertainty. As depicted with the

cone of uncertainty [167], open design decisions introduce uncertainty about the software

system to design, and making decisions reduces said uncertainty.

Kruchten [150] presents an ontology of ADDs. The author distinguishes between existence,

property and executive decisions and provides an overview of ADDs attributes. This is

especially relevant when considering uncertainty that can void existing decisions and

require software architects to backtrack. Jansen and Bosch [124] see software architecture

as a composition of ADDs. This shows how uncertainty, e.g., about the system context,

can hinder good software design as the best decision might not be found. Although both

approaches do not focus on uncertainty, they inspired our classi�cation which is strongly

coupled to architectural design, see Section 5.3.

Lytra and Zdun [159] propose the use of fuzzy logic to incorporate inherent uncertainty into

reusable ADDs. This shall enable software architects to share and reuse knowledge about

the impact of uncertainty on quality attributes. They employ a Fuzzy Inference System (FIS)

to identify the most appropriate design decisions and also foster the importance of decision

documentation. This is related to our data �ow analysis under environmental uncertainty

that is also based on fuzzy inference, see Section 7.4. Furthermore, we also address

knowledge exchange and documentation with our uncertainty catalog, see Section 5.7.

Although this approach can also handle security-related quality attributes, violations due

to integration issues remain hidden. Here, the integration of a dedicated analysis—such as

our con�dentiality analysis—helps identifying also �ne-grained problems. Future work

could investigate whether de�ning reusable ADDs to ensure con�dentiality is feasible.

Zimmermann et al. [280] present a framework to support the identi�cation, making, and

enforcement of ADDs. This is especially helpful regarding the aforementioned backtrack-

ing, i.e., reverting decisions in case of design errors. Here, awareness of dependencies

minimizes the required e�ort and the chance of introducing new errors while backtracking.

231

10. Related Work

Noppen, J.A.R. et al. [181] discuss design decisions under imperfect information by explic-

itly modeling uncertain aspects of the architecture based on fuzzy techniques and design

trees to record the design history. Busari and Letier [43] present the RADAR approach

[44] that comprises a modeling language and decision analysis support. They highlight

dependencies between decisions and provide support to �nd Pareto-optimal solutions.

Although these approaches help to minimize errors during the design and help to recall the

decision paths, they do not support analyzing software systems regarding con�dentiality.

Nevertheless, we argue that such frameworks are helpful in combination with modeling

and analysis support, which should be investigated in the future.

10.1.7. Uncertainty Management and Knowledge Sharing

Regarding the management of uncertainty and ADDs, the previous paragraphs introduced

a multitude of approaches for modeling, analyzing, and optimizing software architectures.

In the following, we focus on uncertainty management and knowledge sharing beyond the

design of single software systems. Collecting and consolidating knowledge on architectural

design and uncertainty supports software architects [86, 159, 273, 280]. It can help to

address unanticipated change that is not completely unforeseen and can be tackled, e.g.,

by minimizing assumptions or creating reusable system building blocks. [81]. The need

for uncertainty management, reusable methods, and end-to-end approaches has also been

highlighted in the aforementioned surveys and research roadmaps [115, 255, 272, 273].

Knowledge sharing to counter uncertainty is also known from legal sciences [251].

With r ARC
3
N, we present a catalog of uncertainty sources to overcome the limitation

of knowledge being scattered among researchers and institutions. A related approach is

Decision Buddy, a tool-supported collaborative approach regarding design decisions by

Gerdes et al. [86]. By collecting and describing the e�ects of ADDs, the decision-making of

software architects can be supported with suitable and ranked solutions. privacypatterns.eu
is a web-based collection of patterns to enhance privacy Colesky and Caiza [59]. The col-

lection comprises patterns like access control, single point of contact, or informed consent

[58] Last, arc42 represents an interactive collection of software qualities [247], comprising

requirements, de�nitions, and relations. These works provide comparable approaches to

our proposed solution but cannot be applied to uncertainty and con�dentiality due to the

domain gap. Additionally, the aforementioned tooling is partially fragile due to link decay

[91] or lacks open accessible data. To counter such issues and to reach high usability and

longevity, our tool support is publicly available, see Section 5.7. Ultimately, we want to

stress the importance of e�orts towards catalogs and guidelines, especially with regard to

cooperation among researchers and science transfer
2
.

Jasser and Riebisch [127] present a repository of security solutions to support ADDs.

Exemplary solutions are access control, input sanitization, or the principle of the least

2
The importance of guidelines and checklists was already emphasized by practitioners at EMLS’ 21, in the

very �rst workshop in which our approach was discussed [99]. r ARC
3
N represents one result of these

�ndings, which received very positive reviews and feedback from the community.

232

10.2. Software Architecture and Con�dentiality

privilege. Here, the focus on security as a central quality property enables more precise

classi�cation, e.g., by relating to sub-goals like con�dentiality, integrity, or availability

[120]. We consider this to be highly related to our catalog approach, although we approach

the challenge from the opposite direction: Instead of providing solution techniques, we

focus on supporting the identi�cation of potential problems in the form of uncertainties.

Last, Lupafya and Balasubramaniam [158] present a framework for considering uncertainty

in the software design. Their conceptual model connects viewpoints to uncertainties, risks

and opportunities, and their mitigation or exploitation. Furthermore, they present a

classi�cation of uncertainty based on consolidating existing work. Although the approach

looks promising at �rst sight, it falls short of providing further management, modeling,

or analysis support beyond describing uncertainty sources with attributes. Furthermore,

combining existing classi�cations without further purpose lacks novelty [132].

10.1.8. Summary

The intersection of research on software architecture and uncertainty presented in this

section represents the largest body of related work. According to the aforementioned

surveys, the state of the art is still of an exploratory nature, lacks comprehensive tool

support [115, 255], and does also not focus on con�dentiality. Our approach addresses this

gap regarding con�dentiality with ready-to-use tool support that can easily be incorporated

into existing approaches. Furthermore, related work often inspired us. For instance, our

classi�cation is based on existing taxonomies but tailored to con�dentiality. The decision

to opt for a web-based and open-source catalog approach was also in�uenced by the

perceived link decay [91] of related work. Our approach is by far not the �rst to incorporate

uncertainty modeling in the form of scenarios into the architectural design. However,

we were unable to �nd related work that can identify con�dentiality violations due to

uncertainty. We conclude that our approach represents novel work that can be combined

with existing frameworks to compose comprehensive end-to-end approaches [272].

� Finding: Related work provides the foundation and inspiration for many as-

pects of our research. However, to the best of our knowledge, there exists no

directly comparable approach. Ultimately, combining multiple analyses that di�er

in supported uncertainty sources and targeted quality properties is expedient.

10.2. So�ware Architecture and Confidentiality

The next section of related work we discuss in this thesis represents the intersection of

software architecture and con�dentiality. We present work from the �eld of model-based

security analysis and existing approaches to architectural data �ow analysis. Afterward,

we revisit the speci�cation of con�dentiality requirements as they represent one important

input to data �ow analysis that can impact the accuracy of identi�ed con�dentiality

violations. This includes related work on access control.

233

10. Related Work

10.2.1. Model-based Security Analysis

Model-based analyses use the model representation of software systems to evaluate their

quality, e.g., by using architectural models. They use techniques known from Model-Driven

Software Development (MDSD), see Section 2.3. Nguyen et al. [177] present a SLR based on

108 primary studies. They �nd that the vast majority of papers use standardized notations

like the UML, but only less than half of the investigated papers consider con�dentiality.

When con�dentiality is discussed, it is often combined with considering authentication or

authorization. Only 11% of the investigated publications focus on analyzing con�dentiality.

They also �nd a lack of analyses that simultaneously consider multiple security concerns.

Jürjens [131] present UMLsec that extends UML by de�ning a security pro�le [129, 130].

By incorporating security-related information into UML, software architects can reuse

existing UML diagrams for security analysis. It supports di�erent kinds of analyses, such as

information �ow or access control. In contrast to our con�dentiality analysis approaches, it

does not support access control on data, or more complex con�dentiality requirements that

go beyond, for instance, encrypted communication. Another UML security pro�le is Se-
cureUML by [157]. It supports Role Based Access Control (RBAC) together with statements

in the Object Constraint Language (OCL) to support dynamic properties in authorization

constraints. Similarly, there is no support for more advanced constraints regarding con-

�dentiality. Although both approaches represent relevant steps towards model-driven

security, they both show the lack of comprehensive support for con�dentiality beyond

access control, or encryption, as already discussed in the aforementioned survey. Further-

more, they do not support uncertainty in their analyses. Last, Rønneberg [209] propose

information �ow analysis in CBSE, following the approach of correctness-by-construction

to enable security guarantees.

Walter et al. [267] present a comprehensive approach to identifying con�dentiality viola-

tions using attacker propagation [265, 267] and attack path analysis [264, 268]. They extend

the Palladio Component Model (PCM) [207] to express vulnerabilities and access control

with the eXtensible Access Control Markup Language (XACML) [182]. This enables the

propagation of attackers within the software architecture. After each propagation step,

the analysis considers which credentials or access rights the attacker might have obtained,

e.g., due to vulnerabilities within the system. The approach also considers dependencies

within the software architecture. For instance, if an attacker gains access to a resource

container, this also a�ects all components deployed on this resource. The resulting attack

graphs shall help software architects to estimate the impact of vulnerabilities and access

control decisions. This approach is highly related to our work, as it uses a similar approach

to architectural models [207] and architecture-based propagation [46, 106]. However, it

has two limitations regarding our needs. First, there is no consideration of data �ows,

as con�dentiality violations are identi�ed by tracing attack paths. Second, there is no

comprehensive support for considering uncertainty, although initial approaches exist

[265]. The authors acknowledge this limitation and state that “the combination with other

uncertainty mitigation approaches” [264] could be expedient.

234

10.2. Software Architecture and Con�dentiality

10.2.2. Data Flow Analysis

The concept of DFDs and data �ow analysis is not new [64]. Nevertheless, data �ow

analysis approaches are often used to assess the security of software systems. This can be

achieved by building on noninterference like JOANA [242] or deductive veri�cation like

KeY [3]. Other approaches extract data �ows from source code without considering the

software architecture. RogueOne by Sofaer et al. [244] uses data �ows to identify rogue

updates, i.e., malicious changes to widely used libraries that aim to attack dependent

software systems. More recently, GitHub [89] pushes the adoption of CodeQL [173]

for data �ow-based source code analysis and vulnerability detection. Due to the broad

applicability, such analyses represent promising approaches to analyzing the con�dentiality

of real-world software. However, they lack the connection to the architectural abstraction,

which becomes visible, e.g., when considering architecture-related information like the

deployment. Here, approaches to connect source code analyses and architectural analyses

exist, e.g., by Kramer et al. [147] and Reiche et al. [204]. However, they do not consider

uncertainty. Combining source code analyses with architectural analyses and making

uncertainty-aware represents a promising direction for future research. With appropriate

tool support, DFDs represent a powerful and commonly used mechanism for threat analysis

[25] that helps in identifying security-related issues [226].

The most related architectural data �ow analysis is presented by Seifermann et al. [236].

Their approach considers additional context information, such as the deployment, enabling

software architects to analyze con�dentiality during early design phases. We introduced

their underlying meta model for the con�dentiality-focused analysis of DFDs in Section 2.5.

Furthermore, they present an approach for label propagation to identify con�dentiality vio-

lations. Software architects can specify and analyze con�dentiality requirements regarding

noninterference, encryption, or access control. A Domain-Speci�c language (DSL) [100,

105] enables the speci�cation of data �ow constraints. Our data �ow analysis framework

[36], introduced in Section 7.2, builds on this approach. However, the original data �ow

analysis is unable to consider uncertainty. The authors acknowledge this limitation and

the importance of considering uncertainty in the architectural design and analysis [233].

Boltz et al. [39] focus on the collaboration of legal and software experts in the assessment

of information security and data protection. They propose a model-based approach using

the data �ow analysis framework [36] described in Section 7.2. By using the Architectural

Description Language (ADL) PCM, analyses of multiple quality properties are also possible,

e.g., regarding performance and security [38]. However, their approach only considers

uncertainty coming from the legal side. Here, combining our �ndings on modeling and

analyzing uncertainty could be a promising approach. Pilipchuk [196] present an access

control analysis based on business processes to align processes and access control policies

[197]. By extracting access control requirements from business processes and using them

in architecture-based data �ow analysis, forbidden data �ows can be identi�ed. However,

this approach also focuses on conformance without considering uncertainty.

Peldszus et al. [193] also present a data �ow analysis approach called SecDFD. They check

for compliance between models of the design and the implementation to identify violations.

235

10. Related Work

The mapping is automated but lacks support for custom analysis de�nitions or data �ow

constraints and also does not consider uncertainty. The early detection of design �aws

[256, 257] is closely related to the aforementioned data �ow analysis by Seifermann et al.

[236] and was also a baseline for the uni�ed modeling primitives for DFDs used in our

work, see Section 2.5. Another approach is iFlow by Katkalov et al. [135]. They use UML

models to derive and analyze data �ows. Furthermore, the generated source code can be

veri�ed. Gerking et al. [88] present a model-based information �ow analysis to identify

timing channels. Both approaches do not consider uncertainty, but Gerking [87] mentions

the incorporation of uncertainty as potential future work.

Last, Schneider and Scandariato [228] present an automated approach to extract DFDs

from the source code of microservice applications. They enrich the extracted DFDs with

security-related information, e.g., regarding data storage, passwords, or logging. This

enables comprehensive data �ow analysis that also considers architectural information.

They also published a large data set comprising the DFDs of 17 real-world microservice

systems [227]. In a proof of concept, we transformed and analyzed this data set using

our data �ow analysis framework [36] to replicate the identi�ed con�dentiality violations.

There are also other steps towards security benchmarks [14]. We state that this represents

a promising �rst step towards comprehensive data �ow analysis that considers both the

information from the source code and the software architecture. However, similar to the

previously discussed approaches, uncertainty is not considered.

10.2.3. Modeling Confidentiality Requirements

The data �ow analysis approaches presented in this thesis use con�dentiality requirements

in the form of data �ow constraints as input, see Section 2.5. Similarly, many related

approaches discussed in the previous paragraphs use a dedicated requirement speci�cation

language. Often, con�dentiality requirements are also speci�ed using access control [177].

The speci�cation of con�dentiality requirements impacts the identi�ed con�dentiality

violations, with our without considering uncertainty. We brie�y summarize related work

in both �elds in the following.

Onabajo and Jahnke [189] investigated the properties of con�dentiality requirements using

grounded theory. They present a model for requirements comprising elements like data,

stakeholders, statements, purpose, and temporal validity. This shall support the precise

de�nition of requirements and enable the formal reasoning on derived rules, e.g., from

legal frameworks like the General Data Protection Regulation (GDPR) [73]. To provide

a foundation to describe such con�dentiality requirements for data �ow analysis, we

presented a meta model and a DSL in previous work [105]. Data �ow constraints follow

the pattern of disallowing �ows under certain conditions based on the characteristics of

the data and involved entities or parts of the system. A generalized form of this DSL was

presented with the data �ow analysis framework [36]. However, these approaches are not

able to express restrictions with regard to uncertainty, e.g., whether certain �ows shall

not be allowed under given uncertain conditions. Here, more research is required.

236

10.3. Con�dentiality and Uncertainty

As discussed previously, access control is often used to express con�dentiality require-

ments through access control policies [233]. To guide software architects from high-level

requirements to low-level policies, access control policy re�nement techniques have been

proposed [277]. Su et al. [154] discuss the automated decomposition of policies based

on the resource hierarchy in distributed applications. He and Antón [109] present an

approach to de�ne and re�ne access control policies by analyzing the speci�cation of

requirements and the system’s database design. Furthermore, both model-based [160, 166]

and veri�cation-based [54, 169] approaches exist, e.g., using logic programming languages

like Prolog [61, 279]. Unfortunately, all of these approaches do not explicitly consider

any kind of uncertainty. The relation of uncertainty, i.e., the lack of knowledge and the

speci�cation and re�nement of access control policies that respect uncertainty represents

an interesting direction for future work.

10.2.4. Summary

The intersection of research on software architecture and con�dentiality shows a multitude

of modeling and analysis approaches. Following the principle of security and privacy by

design [224], the early consideration and analysis of security and privacy is expedient.

Moreover, �xing issues in later phases is usually more costly [32, 240]. Related work

often uses a model representation to perform security analysis, e.g., based on UML, DFDs,

or the PCM. Although we identi�ed many promising approaches, we were unable to

identify an architecture-based analysis that both considers con�dentiality and uncertainty.

Many approaches acknowledged this limitation [87, 233, 264]. Nevertheless, especially

our data �ow analysis framework [36] is inspired by related work regarding architecture-

based [233] and code-based [228] data �ow analysis. We repeat the conclusion of the

previous section that these �ndings support the novelty of our work. Moreover, analysis

combinations represent promising approaches, e.g., by closing the gap between the design

and the implementation regarding con�dentiality analysis under uncertainty.

� Finding: Related work shows a multitude of security analysis approaches

supporting con�dentiality based on models speci�ed using the UML, PCM, or

DFDs. Despite their versatility, they lack support for considering uncertainty

within the modeling and analysis of con�dentiality.

10.3. Confidentiality and Uncertainty

The last section of related work discussed in this chapter is the intersection of research

on con�dentiality and uncertainty. This represents the smallest part of related work as

we were unable to identify comprehensive approaches that consider con�dentiality under

uncertainty. The aforementioned surveys [243, 255] support this shortcoming, as only a

few identi�ed approaches explicitly target security; con�dentiality is not mentioned at

237

10. Related Work

all. We split related work into two groups: uncertainty-aware con�dentiality analysis and

access control under uncertainty to ensure con�dentiality.

10.3.1. Uncertainty-Aware Confidentiality Analysis

We identi�ed two approaches to con�dentiality analysis under uncertainty. First, work

regarding uncertainty in cloud computing and, second, work regarding risk assessment

of data breaches. Tchernykh et al. [254] discuss di�erent types of uncertainty in the

context of cloud computing. Moreover, they propose approaches to minimize the impact of

uncertainty on the systems’ reliability and privacy, e.g., data replication, error correction,

and homomorphic encryption. However, the presented work is still in a preliminary state

and lacks modeling or automated analysis.

Morali et al. [174] focus on the assessment of risk regarding con�dentiality. By propagating

data breaches through the modeled software system, the criticality can be measured. The

software system is modeled as a graph showing the dependencies between infrastructure

nodes regarding exchanged information. Edges of this graph are annotated with the

propagation likelihood of attackers, which enables the modeling of risk. However, it

is not speci�ed how software architects should be able to annotate every edge with an

appropriate propagation likelihood and the evaluation only comprises a single case study.

The authors state further studies as future work. Although we assume that also this

approach is still preliminary, the modeling of data dependencies and the propagation of

attackers is promising. The analysis is related to the work to Walter et al. [268] but requires

high modeling e�ort and does also not claim any automation.

10.3.2. Access Control Under Uncertainty

As discussed previously, access control represents a common approach to ensure the

con�dentiality of data in software systems. Here, many approaches to access control under

uncertainty exist. Although these approaches are not directly comparable to our approach

of architecture-based modeling and analysis of con�dentiality under uncertainty, they

comprise related concepts like fuzziness and taking known uncertainty into account.

Bures et al. [41] discuss the relation of uncertainty and access control in highly dynamic

environments like Industry 4.0. Here, uncertainty-aware access control policies directly

consider imperfect information in modeling access decisions. Hengartner and Zhong

[114] present an access control model for distributed systems that incorporates trust

by explicitly specifying remaining uncertainty in access decisions. Other approaches

regarding uncertainty in access control also utilize fuzzy logic, e.g., to represent security

patterns [116] or to create risk-adaptive access control models to cope with the uncertainty

[56]. Numerous other approaches also discuss fuzzy approaches to access control [161,

165, 172, 178, 220, 221]. Only a few take the described known uncertainty into account

when making access decisions [10, 62].

238

10.4. Summary and Outlook

However, details about such policies are usually not speci�ed in the architectural ab-

straction but are added during policy re�nement. Here, the high degree of uncertainty

regarding the structure, behavior, and usage of the software does not allow one to draw

precise conclusions on the con�dentiality of the overall system. Cheng et al. [56] explain

this problem with unforeseeable tradeo�s while de�ning policies. Strict policies may

reduce the risk of data breaches but may harm the �exibility of software systems, espe-

cially in highly dynamic environments like implied by Industry 4.0 [41]. The common

gap of uncertainty-aware approaches to model access control is the lack of re�nement of

high-level con�dentiality requirements whose abstraction is also a source of uncertainty.

In sum, uncertainty-aware access control can be seen as an alternative approach to deal

with uncertainty in a software system [194].

10.3.3. Summary

As discussed previously, the intersection of con�dentiality and uncertainty yields the least

amount of related research. One reason could be the focus of the research community

on other qualities like performance and reliability [115, 243]. Nevertheless, we identi�ed

related uncertainty-aware con�dentiality analyses and numerous approaches to access

control under uncertainty. Both fall in one of the two categories of handling uncertainty,

discussed by Perez-Palacin and Mirandola [194]. The model can be re�ned to incorporate

the uncertainty and become more resilient, like the approach to consider uncertainty in

cloud computing by Tchernykh et al. [254]. Otherwise, the uncertainty can be actively

managed as part of the model, e.g., in fuzzy access control policies [56, 165, 178].

� Finding: Related work comprises only a few approaches to uncertainty-aware

con�dentiality analysis. The identi�ed approaches are of a preliminary nature

and lack comprehensive modeling and automated analysis support.

10.4. Summary and Outlook

In this chapter, we provided an overview of the related work. First, we focused on work

from the areas of software architecture and uncertainty. Here, many surveys like SLRs

and roadmaps have been discussed in the last decades. We investigated taxonomies

related to our classi�cation, introduced in Chapter 5, and architecture-based analyses

related to our impact analysis, introduced in Chapter 6. Furthermore, we summarized the

comprehensive state of the art in architecture evaluation that is related to our data �ow

analyses, introduced in Chapter 7. Last, we revisited the relation of ADDs and uncertainty

and existing approaches to uncertainty management.

In the second part of this chapter, we investigated work regarding software architecture

and con�dentiality. Here, many model-based security analyses and data �ow analyses

have been proposed. They share common approaches like design time modeling and

analysis or using propagation to better assess the system’s security. In the last part of this

239

10. Related Work

chapter, we discussed work that considers con�dentiality under uncertainty, which yielded

the smallest amount of publications. Here, we summarized existing uncertainty-aware

con�dentiality analyses and access control under uncertainty.

In sum, we provided a comprehensive yet comprehensible overview of the state of the art.

By comparing our results from the individual sections, we can derive two initial �ndings

on related work. First, related work often covers two, but not all three aspects of our

approaches: Architectural uncertainty-aware analysis do not focus on con�dentiality,

architecture-based con�dentiality analysis do not consider uncertainty, and uncertainty-

aware con�dentiality analysis lack the architectural abstraction. Second, our impression of

related work supports the results from the aforementioned surveys [115, 255], e.g., the lack

of supporting heterogeneous uncertainty, the lack of consolidated notions of uncertainty

and providing tool support, or the challenge of end-to-end approaches [272].

However, recent advances like the OMG PSUM standardization process [184], or the

research agenda to understand and manage uncertainty [273] show that the community is

well aware of these challenges and actively addresses them. We hope that the contributions

of this thesis, which were designed with these challenges in mind, also contribute to this

research. Ultimately, please note that this related work chapter does not present a SLR.

Thus, it is possible—and even probable—that we missed some related publications.

This chapter summarized work related to our contributions. These contributions are

presented in# Chapter 5: Identi�cation and Classi�cation of Uncertainty Regard-
ingCon�dentiality,#Chapter 6: Uncertainty Propagation to Enable Uncertainty
ImpactAnalysis, and#Chapter 7: Uncertainty-AwareData FlowAnalysis to Iden-
tify Con�dentiality Violations. To learn more about the foundations, see#Chapter 2:
Foundations. Next, we will conclude this thesis in # Chapter 11: Conclusion.

10.5. In Simpler Words

Our research is part of three major research communities. First, the software architecture

community researches how we can design better architectures to enhance the quality of

software systems. Second, the Self-Adaptive Systems (SASs) community researches how

we can build more �exible systems that adapt themselves when facing uncertainty. Third,

the security community researches how to analyze and ensure security-related properties

like con�dentiality. In all three communities, many ideas are related to our work. In this

chapter, we give an overview of the most related publications.

First, we look into architecture-based approaches that also consider uncertainty. Here,

many researchers proposed methods to optimize software architectures regarding uncer-

tainty and to help software architects make better decisions when designing software

systems under uncertainty. We learned a lot from these approaches and tried to address

the identi�ed shortcomings in our contributions. Second, we look into architecture-based

approaches to analyze con�dentiality. Here, some of the most related work exists, e.g., the

data �ow analysis that inspired our data �ow analysis framework, presented in Chapter 7.

240

10.5. In Simpler Words

However, these approaches do not consider uncertainty and thus do not solve the problem

we want to address with our work. Third, we look into work that tries to understand con-

�dentiality while considering uncertainty. Here, we only found a few related publications,

some of which are in a preliminary state. In sum, we did not �nd a single publication that

does exactly what we propose in this thesis—which is a good thing, because otherwise,

the novelty of our work would be limited.

241

11. Conclusion

This chapter concludes this dissertation. First, we look back and give a short summary

on the contributions, their validation, and the key �ndings of this thesis. Afterward,

we present the key bene�ts of our work. Last, we comprehensively discuss future work

and current and future research directions. Note that all previous chapters comprise

detailed conclusion and outlook chapters that are summarized here. This is especially

true for the contribution chapters, where we also thoroughly discussed the assumptions

and limitations of our contributions. For detailed summaries, please refer to Section 5.9

regarding our classi�cation and catalog approach (C1), to Section 6.9 for our uncertainty

impact analysis and propagation (C2), to Section 7.8 for our approaches to uncertainty-

aware con�dentiality analysis (C3), and to Section 9.5 regarding the evaluation.

11.1. Summary

This thesis was located in the intersection of three topics: con�dentiality, software ar-

chitecture, and uncertainty. Con�dentiality demands that information is not disclosed to

unauthorized persons or organizations [120], which is a crucial quality property due to

the high level of connection and the growing volume of data in modern software systems

[187]. To address the high number of data breaches [13, 55, 83], con�dentiality should be

considered early in the design. However, existing software architecture-based con�dential-

ity analyses [36, 193, 196, 233, 264] do not consider uncertainty, i.e., the lack of information

or knowledge regarding the software systems or its environment [2, 120, 195]. This major

challenge is also acknowledged in related work, e.g., as “lack of systematic approaches

for managing uncertainty” [115] or as the need of software engineers “to identify the

types of uncertainty that can a�ect their application domains” [255]. Put simply, software

engineering is complex [272] and uncertainty is uncertain [81].

To address this, we introduced an approach that combines the analysis of uncertainty

with the analysis of con�dentiality. Based on the classi�cation of uncertainty regarding

con�dentiality (C1), we presented two central analysis approaches. First, an uncertainty

impact analysis (C2) that propagates the e�ects of uncertainty within the architectural

model to predict the potential impact. Second, uncertainty-aware data �ow analyses

(C3) that extend the concept of data �ow-based con�dentiality analysis [36, 233, 234,

236] by uncertainty awareness. By embracing uncertainty as a �rst-class concern within

software architecture [80], software architects become aware of the consequences and can

identify con�dentiality violations due to uncertainty. To address the lack of tool-assisted

243

11. Conclusion

approaches to analyzing and managing uncertainty [115, 255], we provided tool-support for

the identi�cation (r ARC
3
N), propagation (r UIA), and uncertainty-aware con�dentiality

analysis (r Abunai). This addresses the challenges [99] of understanding the relation

of con�dentiality and uncertainty, representing uncertainty in architectural abstraction

regarding con�dentiality, and analyzing con�dentiality under uncertainty. We used a

running example throughout this thesis to exemplify the ideas and new concepts. Based on

the scenario of a simpli�ed online shop, where customers browse for available items and

make purchases, we introduced uncertainty sources like user behavior, data processing,

deployment, or provider trustworthiness. To deal with uncertainty, we target four key

activities: identi�cation, classi�cation, propagation, and analysis. The resulting procedure

is aligned with our three contributions and our tool support, see Chapter 4. In the following,

we brie�y summarize the three contributions of this dissertation:

Identification and classification of uncertainty (C1) Our �rst contribution comprised a

classi�cation of uncertainty regarding its impact on con�dentiality [104] and a catalog

approach to support the identi�cation of new uncertainty sources. We detailed the relation

of uncertainty sources and their impact and investigated existing uncertainty taxonomies

[41, 162, 195, 202, 263]. Here, we also coined the term software-architectural uncertainty

that describes uncertainty on architectural abstraction where early awareness helps in the

assessment and mitigation. Afterward, we de�ned a classi�cation tailored to con�dentiality

on architectural abstraction. The central category is the Architectural Element Type, with

options like External uncertainty, or Actor uncertainty, that are used throughout the

remaining thesis. We used this classi�cation to represent uncertainty as a �rst-class

concern [80] within Data Flow Diagrams (DFDs). Last, we presented an approach to the

collaborative identi�cation of uncertainty sources [103], which results in the tool-supported

catalog r ARC
3
N. Combined, the classi�cation and the catalog approach contribute to

our understanding of the relation between uncertainty and con�dentiality in software

architecture and provide an answer to ä Research Question 1.

� Finding: An uncertainty classi�cation tailored to con�dentiality provides the

terminology to describe uncertainty sources and their impact. The integration of

this classi�cation into an uncertainty source catalog simpli�es the identi�cation of

new uncertainty sources and improves the understanding of software architects.

Uncertainty impact analysis (C2) Our second contribution focused on the propagation of

uncertainty within architectural models to de�ne an uncertainty impact analysis. First, we

discussed the representation of uncertainty in architectural models [102, 255]. Afterward,

we provided algorithms for the propagation of all �ve uncertainty types according to our

classi�cation within architectural models and also within DFDs. Combined, this enabled

the de�nition of an uncertainty impact analysis that predicts the potential impact of

uncertainty sources and potential locations of con�dentiality violations. With r UIA,

we also provided tool support for architecture-based uncertainty impact analysis. By

combining the previously introduced catalog approach with this impact analysis, we also

244

11.1. Summary

addressed the identi�cation problem in this analysis. Last, we generalized our �ndings [49]

to address the Uncertainty Interaction Problem (UIP) by de�ning the notion of Uncertainty

Flow Diagram (UFD). To conclude, this answers ä Research Question 2 about the

propagation and impact assessment of uncertainty regarding con�dentiality.

� Finding: The propagation of uncertainty within architectural models helps to

estimate the potential impact and to predict con�dentiality violations. Moreover,

uncertainty propagation can also be used to analyze uncertainty interactions.

Uncertainty-aware confidentiality analysis (C3) As the third contribution, we presented

four approaches to uncertainty-aware data �ow analysis to analyze the con�dentiality

of architectural models. First, we introduced an extensible data �ow analysis framework

[36] and provided the conceptual basis of uncertainty-awareness in data �ow analysis.

Afterward, we presented four analysis approaches that di�er in the complexity of the

analysis algorithm and in supported uncertainty types. We presented two type-speci�c

approaches, tailored to structural uncertainty, and environmental uncertainty, and two

type-agnostic analyses. We also introduced r Abunai, which provides tool support for

the most advanced type-agnostic approach. Last, we also discussed the complexity of

uncertainty-aware data �ow analysis as naive approaches su�er from the combinatorial

explosion, known from design space exploration [143]. These uncertainty-aware data

�ow analyses represent an answer to ä Research Question 3, which asked about how

to analyze con�dentiality requirements while considering uncertainty.

� Finding: Architecture-based con�dentiality analysis can be achieved by con-

sidering the impact of uncertainty on the �owing data. Here, building on the

�ndings of uncertainty propagation and interaction helps to ensure accuracy and

scalability while supporting all identi�ed uncertainty types.

The validation of our contributions was based on a Goal Question Metric (GQM) plan

[16, 17] that comprised 8 goals, 19 questions, and 32 metrics. First, we evaluated our

uncertainty classi�cation according to an taxonomy evaluation method [132], and the

usability of our catalog approach. Afterward, we evaluated the uncertainty impact analysis

using the same evaluation plan already used to evaluate change impact analysis [210,

211], i.e., focusing on accuracy and e�ort reduction. Last, we evaluated the scalability

and accuracy of our uncertainty-aware data �ow analyses. As part of the evaluation, we

used six evaluation scenarios, see Chapter 8. This scenarios originate from related work

[133, 135, 152, 203, 234] or real-world software systems [69, 119, 199, 216]. All scenarios

have di�erent con�dentiality requirements, and di�erent con�dentiality violations due to

uncertainty. Additionally, we conducted two user studies. Overall, we �nd the evaluation

results satisfying. Many measurements represent perfect results, while others show room

for improvement despite being acceptable. The biggest room for improvement is in the

usability of the classi�cation and catalog approaches, which is not surprising as both

represent novel approaches with only prototypical tool support. However, we especially

want to highlight the impressive e�ort reduction of 86% provided by our uncertainty

245

11. Conclusion

impact analysis and the complexity reduction of our uncertainty impact-aware data �ow

analysis, see Section 9.5. In Chapter 1, we de�ned the research goal of this dissertation:

V Research Goal: De�ne a classi�cation of uncertainty sources regarding con�-

dentiality using the software architectural abstraction. Provide architecture-based

analyses that predict the impact of uncertainty sources and assist software archi-

tects in identifying con�dentiality violations with respect to uncertainty.

We conclude, that our three Contributions C1 – C3 address this research goal and the

evaluation results show that our contributions are of high quality. Moreover, the contri-

butions address other gaps known from recent surveys, such as the need for systematic

approaches for managing uncertainty [115], the representation of uncertainty in models

[255], and the need for uncertainty-aware end-to-end approaches [273]. Last, some of

the concepts presented in this thesis have already been generalized, e.g., to address un-

certainty interactions [49]. We hope that our �ndings help the research community to

further advance in the areas of uncertainty, con�dentiality, and software architecture.

11.2. Benefits

We see many bene�ts in the contributions of this dissertation. These bene�ts were already

enumerated in the summaries of the contributions chapters, i.e., in Section 5.9, Section 6.9,

and Section 7.8. In the following, we repeat the key bene�ts.

The explicit modeling of uncertainty and con�dentiality on architectural abstraction and

the incorporation of these concepts in architecture-based con�dentiality analysis grants

several bene�ts. The bene�ts of our classi�cation include precise terminology to discuss

and understand uncertainty regarding con�dentiality. This supports both software archi-

tects and security experts in modeling and analyzing software systems. As proposed in

Chapter 4, we do not require an additional uncertainty expert role, as the required knowl-

edge is contained in the classi�cation, the uncertainty source catalog, and all analyses.

Here, our tooling r ARC
3
N represents a good starting point. By identifying and assess-

ing uncertainty sources early, the reasoning and prioritization of Architectural Design

Decisions (ADDs) is simpli�ed and costly backtracking is minimized. This is especially

true regarding uncertainty interactions [50], which represent uncertainty impacts that

are particularly hard to �nd and mitigate. Last, our classi�cation lays the foundations for

further integration of uncertainty in the architecture-based con�dentiality analyses.

Propagating uncertainty helps software architects in handling uncertainty [2]. Archi-

tecture models can be annotated with uncertainty sources from existing catalogs [103,

104], which helps in the documentation and to raise awareness. The analysis helps in

predicting and mitigating con�dentiality violations. Using a con�dentiality analysis for

this purpose would require software architects to manually understand and model the

impact of uncertainty, which requires more e�ort and expertise. As proposed in our

procedure in Section 4.1, we see uncertainty propagation as the �rst step to analyzing

246

11.3. Future Work

an architectural model prior to any detailed con�dentiality analysis. Here, our tooling

r UIA presents a good starting point. The calculated models of our analysis can also be

used for regression testing or to handle uncertainty at runtime [65].

Our uncertainty-aware data �ow analysis approaches enable an earlier and more accurate

assessment of the overall system’s con�dentiality. Detecting and repairing con�dentiality

issues earlier can reduce cost [32]. Here, we do not even require a fully de�ned software

architecture as the modeled uncertainty can be reused compared to regression tests. The

results of our uncertainty-aware con�dentiality analysis utilize the available information

within architectural models more e�ciently and shall enable an easier interpretation by

software architects. This might also minimize change e�orts, subsequent faults, and costs

due to con�dentiality violations. This is especially true for large models with speci�c

con�dentiality violations that have to be traced through the complete system to become

manageable. Here, we refer to our tooling r Abunai. Including uncertainty in the

design process may increase the �exibility at runtime when facing unexpected context

changes [41]. This shall help in building more resilient software systems. By including

the impact of uncertainty, the quality of con�dentiality analysis results increases due to

higher coverage of considered problems and possible violations. This is especially true for

runtime uncertainty and related to topics like Self-Adaptive System (SAS) [115, 243] and

antifragility [40, 92, 201]. Lastly, our results can also be used as guidelines.

11.3. Future Work

In the following, we provide an overview of potential future work. Note that we make

no claim to completeness, as there is still a lot to do in this area [115, 273]. For the

sake of traceability in future publications, we enumerate all 55 ideas for future work as

FW1 – FW55. We divide future work into four parts: further evaluation of our approach,

extension of our approach and its tool support, integration of our analyses with other

approaches or frameworks, and generalization of our contributions.

Evaluation Although we already presented a comprehensive evaluation in Chapter 9, fur-

ther evaluating our approach is always possible. For instance, by applying our uncertainty

impact analysis and uncertainty-aware data �ow analyses to more evaluation scenarios

from other domains (FW1). Furthermore, we could repeat the user studies with the �nal

versions of both the uncertainty classi�cation (FW2) and the uncertainty catalog approach

(FW3) to investigate changes in usability. Especially regarding the catalog approach,

a user study that compares the performance to a baseline without tool support would

be expedient (FW4). Future work could revisit the validity of identi�ed con�dentiality

violations compared to previous approaches [234, 236], e.g., by utilizing formal methods

(FW5). Here, also the formal representation of Nondeterministic Data Flow Diagrams

(NDFDs) beyond Directed Acyclic Graphs (DAGs) can be expedient (FW6), comparable to

the graph-based formalization of Alshareef et al. [6]. Last, broader studies could evaluate

the usability of our analyses in real-world software architectures (FW7).

247

11. Conclusion

Extension During this dissertation, we identi�ed several extension possibilities for all

contributions. First, our catalog approach and its tool support r ARC
3
N could be extended,

e.g., by integrating recommendation techniques (FW8). Also, the explainability [26, 27]

of uncertainty is relevant (FW9), as the understandability can impact the usability of

software architects. This does not only include recommending and explaining uncertainty

sources in isolation but also considering the software architecture under study (FW10).

Here, the application of Large Language Modelss (LLMs) can be expedient (FW11).

Other extensions could target the beginning and the ending of our approach, i.e., the

requirement phase and the mitigation of uncertainty [180]. First, we could (semi-) auto-

matically derive detailed con�dentiality requirements based on more abstract protection

goals (FW12). This includes the extension of the modeling approach of con�dentiality

requirements as data �ow constraints [105], e.g., to express multiple levels (FW13). An

example would be higher-level requirements that originate from the law and lower-level

requirements that represent, e.g., access control policies (FW14). This could result in

approaches to uncertainty-aware access control policy re�nement [97] (FW15). There

is more research required at the intersection of legal sciences and software architecture

[39], e.g., to better understand and support the legal analysis of software architecture

and the collaboration of experts from both �elds (FW16). Furthermore, de�ning patterns

of con�dentiality requirements and data �ow constraints could increase the usability of

architecture-based data �ow analysis (FW17). All constraint-related future work would

also bene�t from a clearly de�ned meta model based on the new data �ow analysis frame-

work (FW18) that extends previous work [105]. Last, we did not consider the analysis of

uncertainty within requirements (FW19), which can highly impact the analysis results.

Our uncertainty-aware data �ow analyses yield con�dentiality violations due to uncer-

tainty. Future work could extend this to provide means to mitigate the e�ects of uncertainty

(FW20). Examples are the automated repair of models to comply with con�dentiality

requirements (FW21), or constraint optimization (FW22). Also the holistic automated

repair of con�dentiality-violating models without even considering uncertainty could be

possible (FW23). Regarding the propagation of uncertainty with r UIA, the precision of

our impact analysis could be increased by further minimizing the impact set. Currently,

starting from an initial uncertainty impact location, the remaining data �ows are added

to the impact set. However, based on guarantees or checkpoints within the system [51],

e.g., guaranteed encryption, the impact set could be reused (FW24). Last, future work

could address the r Abunai tool support. Here, the modeling of uncertainty sources

could be simpli�ed (FW25), e.g., by providing graphical editors that surpass the quality

of the diagrams shown in Appendix A (FW26), or a Domain-Speci�c language (DSL)

under uncertainty (FW27). Also, the integration of low-code approaches in the data �ow

analysis and r Abunai is possible (FW28). Here, the textual representation of Palladio

Component Model (PCM) instances and con�dentiality-related information like labels and

assignments could be expedient (FW29). This would also address the need for end-to-end

approaches [273]. Last, our work would also bene�t from advances in the underlying

data �ow analysis framework [36, 118, 179], e.g., the graphical display of con�dentiality

violations (FW30) and uncertainty (FW31), support for cyclic data �ow diagrams [12]

(FW32), and graphical editors to annotate uncertainty sources to the model (FW33).

248

11.3. Future Work

Integration Besides extending our approach, future work can also address the previously

discussed integration with other analysis approaches or into other analysis frameworks.

First, future work should investigate whether our approach can be combined with CodeQL

[89, 173] to enable code-based uncertainty propagation (FW34). This could also enable

the coupling of data �ow analysis regarding architectural models and code [156, 204]

(FW35). Another potential integration could be the extension of extracted DFDs from

microservices [228] by uncertainty [179] to increase the expressiveness (FW36). Other

viable combinations are the integration of uncertainty in attack path analysis [268] (FW37)

or other architecture-based security analyses [131, 135, 157] (FW38). Here, natural lan-

guage processing can be used to derive data �ow constraints from requirements (FW39) to

enable a continuous security analysis that comprises all development phases [229] (FW40).

Furthermore, based on the software architecture, the uncertainty-aware con�dentiality

analysis can be combined with other quality properties (FW41), e.g., performance, cost,

or reliability. This could be achieved with an extension of design space exploration ap-

proaches like PerOpteryx [144] (FW42), similar to Subsection 7.4.1. Also, the coupling of

our uncertainty catalog approach r ARC
3
N with other catalogs is possible (FW43), e.g.,

by relating uncertainty to security solutions [126]. Last, our analyses could be integrated

into already existing frameworks (FW44), e.g., RADAR [43, 44], Rainbow [82], DeTum

[74], or the approach of Lytra and Zdun [159].

Generalization Last, we present potential future work to generalize our �ndings. First,

we only considered simple uncertainty interaction between secondary uncertainty and

primary uncertainty. Here, our �ndings could be used to also address other types of

uncertainty interactions (FW45), see Subsection 7.5.2. Our �ndings could also serve the

general discussion about the UIP [50, 52, 273] (FW46), as initially shown by Camara et al.

[49]. The same applies to the upcoming discussion about antifragility [40, 42, 92, 94, 95,

201]. Here, especially uncertainty propagation could become valuable (FW47). In SASs,

future work could consider the application of our analyses at runtime (FW48). Uncertainty

propagation has also been discussed in the context of coupled models of CPSs [2]. Here,

existing consistency relations between models can be used for the uncertainty propagation

beyond a single model. However, understanding the relation of intra-model and inter-

model uncertainty propagation requires additional research (FW49). Furthermore, it

should be researched which uncertainty types and model elements are applicable for both

(FW50) and also regarding other quality properties than con�dentiality (FW51). This also

raises the question for future work whether the viable combination of a classi�cation and

a catalog, as presented with our �rst contribution, is generalizable (FW52). We presented

approaches to represent uncertainty within architectural models, DFDs, and DAGs. Future

work could de�ne a graphical notation of uncertainty in DFDs to enhance documentation

and communication (FW53). An initial proposal is shown in Appendix E. The easiest

generalization could be the consideration of related quality properties that can also be

analyzed using DFDs [36], e.g., integrity (FW54). Last, future work could de�ne design

patterns for uncertainty-resilient software architectures (FW55).

249

11. Conclusion

In sum, future work has many directions, from revisiting the evaluation, to integrating,

extending and generalizing the contributions of this dissertation. All of this future work

will build on our research, which was the investigation of architecture-based con�dentiality

analysis under uncertainty. We look forward to future insights and research results!

11.4. In Simpler Words

This chapter concludes this dissertation. First, we summarize the content of this thesis,

thereby focusing on our three contributions. The �rst contribution was a classi�cation of

uncertainty regarding con�dentiality. Here, we provided the foundations to reason about

uncertainty. For instance, we discussed which types of uncertainty are relevant regarding

con�dentiality, and which are not. Furthermore, we presented a catalog of uncertainty

sources that helps software architects identify new uncertainty sources in the software

architecture they try to design or analyze. An example of such an uncertainty source is user

behavior, which is always unpredictable to some degree. The second contribution was an

uncertainty impact analysis that propagates uncertainty within the software architecture

to predict con�dentiality violations. This helps software architects to quickly assess the

potential uncertainty impact without much additional e�ort. For instance, they could get

the result that an uncertainty only a�ects non-critical parts of the software, which does

not violate con�dentiality. The third contribution comprised four uncertainty-aware data

�ow analyses to identify con�dentiality violations due to uncertainty. This helps software

architects to build more resilient software systems that ensure con�dentiality even when

facing uncertainty. Using our approach requires less expertise as the knowledge is encoded

as part of the analyses. Due to the automation of our analysis, software architects also

require less e�ort when analyzing an architectural model. Last, our approach helps in the

documentation and communication of uncertainty in architectural models and diagrams.

We conclude this chapter by presenting 55 ideas for future work. Of course, there is

much more research to conduct in this area, but our ideas can serve as a starting point.

We discuss future work regarding further evaluation of our contributions, and many

analysis extensions that also add features to our tooling. Afterward, we show how our

concepts can be integrated into other work, e.g., existing frameworks for architecture-

based analysis. Overall, such future work would provide better and more comprehensive

tools for software architects and further simplify their work—besides helping to answers

current open research questions. Last, we discuss the generalization of our �ndings. Here,

especially uncertainty propagation represents a promising concept for other applications.

For instance, it already has been discussed in the context of uncertainty interactions and in

the propagation between di�erent models of the same software system. After four years of

research, this concludes our work. We hope that our results will contribute to advancing

research in the area of software architecture, con�dentiality, and uncertainty
1
.

1
For you, dear reader, who certainly likes numbers as much as I do: In this dissertation, the word uncertainty
was used 3393 times. You are welcome.

250

Bibliography

[1] N. Abbas, J. Andersson, and D. Weyns. “Modeling variability in product lines

using domain quality attribute scenarios”. In: Proceedings of the WICSA/ECSA 2012
Companion Volume. WICSA/ECSA ’12. Association for Computing Machinery, 20,

2012, pp. 135–142.

[2] M. Acosta, S. Hahner, A. Koziolek, T. Kühn, R. Mirandola, and R. Reussner. “Un-

certainty in coupled models of cyber-physical systems”. In: Proceedings of the 25th
International Conference on Model Driven Engineering Languages and Systems: Com-
panion Proceedings. 25th International Conference on Model Driven Engineering

Languages and Systems (MODELS). MODELS ’22. ACM, 2022, pp. 569–578.

[3] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, and M. Ulbrich. Deductive
software veri�cation–the key book. Springer, 2016.

[4] A. Aleti, S. Bjornander, L. Grunske, and I. Meedeniya. “ArcheOpterix: An extend-

able tool for architecture optimization of AADL models”. In: 2009 ICSE Workshop
on Model-Based Methodologies for Pervasive and Embedded Software. 2009 ICSE

Workshop on Model-Based Methodologies for Pervasive and Embedded Software.

2009, pp. 61–71.

[5] Z. Alexeeva, D. Perez-Palacin, and R. Mirandola. “Design Decision Documentation:

A Literature Overview”. In: Software Architecture. Lecture Notes in Computer

Science. Springer International Publishing, 2016, pp. 84–101.

[6] H. Alshareef, K. Tuma, S. Stucki, G. Schneider, and R. Scandariato. “Precise Analysis

of Purpose Limitation in Data Flow Diagrams”. In: Proceedings of the 17th Interna-
tional Conference on Availability, Reliability and Security. ARES ’22. Association for

Computing Machinery, 23, 2022, pp. 1–11.

[7] S. Ananieva, S. Greiner, T. Kühn, J. Krüger, L. Linsbauer, S. Grüner, T. Kehrer,

H. Klare, A. Koziolek, H. Lönn, S. Krieter, C. Seidl, S. Ramesh, R. Reussner, and

B. Westfechtel. “A conceptual model for unifying variability in space and time”.

In: Proceedings of the 24th ACM Conference on Systems and Software Product Line:
Volume A - Volume A. SPLC ’20. Association for Computing Machinery, 2020, pp. 1–

12.

[8] J. Andersson, R. de Lemos, S. Malek, and D. Weyns. “Modeling Dimensions of

Self-Adaptive Software Systems”. In: Software Engineering for Self-Adaptive Systems.
Springer, 2009, pp. 27–47.

[9] F. Arat and S. Akleylek. “Attack Path Detection for IIoT Enabled Cyber Physical

Systems: Revisited”. In: Computers & Security 128 (1, 2023), p. 103174.

251

http://dx.doi.org/10.1145/2361999.2362028
http://dx.doi.org/10.1145/2361999.2362028
http://dx.doi.org/10.1145/3550356.3561539
http://dx.doi.org/10.1145/3550356.3561539
http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1109/MOMPES.2009.5069138
http://dx.doi.org/10.1109/MOMPES.2009.5069138
http://dx.doi.org/10.1007/978-3-319-48992-6_6
http://dx.doi.org/10.1007/978-3-319-48992-6_6
http://dx.doi.org/10.1145/3538969.3539010
http://dx.doi.org/10.1145/3538969.3539010
http://dx.doi.org/10.1145/3382025.3414955
http://dx.doi.org/10.1007/978-3-642-02161-9_2
http://dx.doi.org/10.1007/978-3-642-02161-9_2
http://dx.doi.org/10.1016/j.cose.2023.103174
http://dx.doi.org/10.1016/j.cose.2023.103174

11. Bibliography

[10] C. A. Ardagna, M. Cremonini, E. Damiani, S. D. C. di Vimercati, and P. Samarati.

“Supporting location-based conditions in access control policies”. In: Proceedings of
the 2006 ACM Symposium on Information, computer and communications security.

ASIACCS ’06. Association for Computing Machinery, 21, 2006, pp. 212–222.

[11] P. G. Armour. “The Five Orders of Ignorance”. In: Communications of the ACM
43.10 (2000), p. 4.

[12] B. Arp, N. Niehues, T. Hüller, F. Schwickerath, N. Boltz, and S. Hahner. “Analyzing

Cyclic Data Flow Diagrams Regarding Information Security”. In: Softwaretechnik-

Trends Band 44, Heft 4. Gesellschaft für Informatik e.V., 2024.

[13] R. Ayyagari. “An Exploratory Analysis of Data Breaches from 2005-2011: Trends

and Insights”. In: Journal of Information Privacy and Security 8.2 (1, 2012), pp. 33–56.

[14] A. Bambhore Tukaram, S. Schneider, N. E. Díaz Ferreyra, G. Simhandl, U. Zdun,

and R. Scandariato. “Towards a Security Benchmark for the Architectural Design of

Microservice Applications”. In: Proceedings of the 17th International Conference on
Availability, Reliability and Security. ARES 2022: The 17th International Conference

on Availability, Reliability and Security. ACM, 23, 2022, pp. 1–7.

[15] J. Bang-Jensen and G. Z. Gutin. Digraphs. Springer Monographs in Mathematics.

Springer London, 2009.

[16] V. R. Basili, G. Caldiera, and H. D. Rombach. “The Goal Question Metric Approach”.

In: Encyclopedia of software engineering (1994), p. 10.

[17] V. R. Basili and D. M. Weiss. “A Methodology for Collecting Valid Software Engi-

neering Data”. In: IEEE Transactions on Software Engineering SE-10.6 (1984), pp. 728–

738.

[18] F. L. Bauer. “Encryption”. In: Encyclopedia of Cryptography and Security. Springer

US, 2005, pp. 202–202.

[19] L. Bauer, L. F. Cranor, R. W. Reeder, M. K. Reiter, and K. Vaniea. “Real life challenges

in access-control management”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’09: CHI Conference on Human Factors in

Computing Systems. ACM, 4, 2009, pp. 899–908.

[20] L. Baumgärtner, A. Dmitrienko, B. Freisleben, A. Gruler, J. Höchst, J. Kühlberg,

M. Mezini, R. Mitev, M. Miettinen, A. Muhamedagic, T. D. Nguyen, A. Penning, D.

Pustelnik, F. Roos, A.-R. Sadeghi, M. Schwarz, and C. Uhl. “Mind the GAP: Security &

Privacy Risks of Contact Tracing Apps”. In: 2020 IEEE 19th International Conference
on Trust, Security and Privacy in Computing and Communications (TrustCom). 2020

IEEE 19th International Conference on Trust, Security and Privacy in Computing

and Communications (TrustCom). 2020, pp. 458–467.

[21] S. Becker, H. Koziolek, and R. Reussner. “The Palladio component model for model-

driven performance prediction”. In: Journal of Systems and Software. Special Issue:

Software Performance - Modeling and Analysis 82.1 (1, 2009), pp. 3–22.

252

http://dx.doi.org/10.1145/1128817.1128850
https://dl.gi.de/handle/20.500.12116/45545
https://dl.gi.de/handle/20.500.12116/45545
http://dx.doi.org/10.1080/15536548.2012.10845654
http://dx.doi.org/10.1080/15536548.2012.10845654
http://dx.doi.org/10.1145/3538969.3543807
http://dx.doi.org/10.1145/3538969.3543807
http://link.springer.com/10.1007/978-1-84800-998-1
http://dx.doi.org/10.1109/TSE.1984.5010301
http://dx.doi.org/10.1109/TSE.1984.5010301
http://dx.doi.org/10.1007/0-387-23483-7_141
http://dx.doi.org/10.1145/1518701.1518838
http://dx.doi.org/10.1145/1518701.1518838
http://dx.doi.org/10.1109/TrustCom50675.2020.00069
http://dx.doi.org/10.1109/TrustCom50675.2020.00069
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066

11. Bibliography

[22] D. Bedford. “Evaluating classi�cation schema and classi�cation decisions”. In:

Bulletin of the American Society for Information Science and Technology 39.2 (2013),

pp. 13–21.

[23] N. Benkler. “Architecture-based Uncertainty Impact Analysis for Con�dentiality”.

Master’s Thesis. Karlsruhe Institute of Technology (KIT), 2022. 169 pp.

[24] B. J. Berger, K. Sohr, and R. Koschke. “Automatically Extracting Threats from Ex-

tended Data Flow Diagrams”. In: Engineering Secure Software and Systems. Lecture

Notes in Computer Science. Springer International Publishing, 2016, pp. 56–71.

[25] K. Bernsmed, D. S. Cruzes, M. G. Jaatun, and M. Iovan. “Adopting threat modelling

in agile software development projects”. In: Journal of Systems and Software 183 (1,

2022), p. 111090.

[26] M. M. Bersani, M. Camilli, L. Lestingi, R. Mirandola, M. Rossi, and P. Scandurra.

“A Conceptual Framework for Explainability Requirements in Software-Intensive

Systems”. In: 2023 IEEE 31st International Requirements Engineering Conference
Workshops (REW). 2023 IEEE 31st International Requirements Engineering Confer-

ence Workshops (REW). IEEE, 2023, pp. 309–315.

[27] M. M. Bersani, M. Camilli, L. Lestingi, R. Mirandola, M. Rossi, and P. Scandurra.

“Architecting Explainable Service Robots”. In: Software Architecture. Vol. 14212.

Springer Nature Switzerland, 2023, pp. 153–169.

[28] M. F. Bertoa, L. Burgueño, N. Moreno, and A. Vallecillo. “Incorporating measure-

ment uncertainty into OCL/UML primitive datatypes”. In: Software and Systems
Modeling 19.5 (1, 2020), pp. 1163–1189.

[29] T. Bitschi. “Uncertainty-aware Con�dentiality Analysis Using Architectural Varia-

tions”. Bachelor’s Thesis. Karlsruhe Institute of Technology (KIT), 2022.

[30] BMDV. BMDV - The Federal Ministry for Digital and Transport launches process
for a Mobility Data Act. 2022. url: https://bmdv.bund.de/SharedDocs/EN/

PressRelease/2022/081- wissing- data- is- the- basis- of- progress.html

(visited on 09/23/2024).

[31] E. D. P. Board. Hamburg Commissioner Fines H&M 35.3 Million Euro for Data Protec-
tion Violations in Service Centre | European Data Protection Board. 2020. url: https:

//www.edpb.europa.eu/news/national- news/2020/hamburg- commissioner-

fines- hm- 353- million- euro- data- protection- violations_en (visited on

09/23/2024).

[32] B. Boehm and V. Basili. “Software defect reduction top 10 list”. In: Computer 34.1

(2001). Conference Name: Computer, pp. 135–137.

[33] S. Bohner. “Software change impacts-an evolving perspective”. In: International
Conference on Software Maintenance, 2002. Proceedings. International Conference

on Software Maintenance, 2002. Proceedings. 2002, pp. 263–272.

253

http://dx.doi.org/10.1002/bult.2013.1720390206
http://dx.doi.org/10.1007/978-3-319-30806-7_4
http://dx.doi.org/10.1007/978-3-319-30806-7_4
http://dx.doi.org/10.1016/j.jss.2021.111090
http://dx.doi.org/10.1016/j.jss.2021.111090
http://dx.doi.org/10.1109/REW57809.2023.00059
http://dx.doi.org/10.1109/REW57809.2023.00059
https://link.springer.com/10.1007/978-3-031-42592-9_11
http://dx.doi.org/10.1007/s10270-019-00741-0
http://dx.doi.org/10.1007/s10270-019-00741-0
https://doi.org/10.5445/IR/1000153079
https://doi.org/10.5445/IR/1000153079
https://bmdv.bund.de/SharedDocs/EN/PressRelease/2022/081-wissing-data-is-the-basis-of-progress.html
https://bmdv.bund.de/SharedDocs/EN/PressRelease/2022/081-wissing-data-is-the-basis-of-progress.html
https://bmdv.bund.de/SharedDocs/EN/PressRelease/2022/081-wissing-data-is-the-basis-of-progress.html
https://bmdv.bund.de/SharedDocs/EN/PressRelease/2022/081-wissing-data-is-the-basis-of-progress.html
https://www.edpb.europa.eu/news/national-news/2020/hamburg-commissioner-fines-hm-353-million-euro-data-protection-violations_en
https://www.edpb.europa.eu/news/national-news/2020/hamburg-commissioner-fines-hm-353-million-euro-data-protection-violations_en
https://www.edpb.europa.eu/news/national-news/2020/hamburg-commissioner-fines-hm-353-million-euro-data-protection-violations_en
https://www.edpb.europa.eu/news/national-news/2020/hamburg-commissioner-fines-hm-353-million-euro-data-protection-violations_en
https://www.edpb.europa.eu/news/national-news/2020/hamburg-commissioner-fines-hm-353-million-euro-data-protection-violations_en
http://dx.doi.org/10.1109/2.962984
http://dx.doi.org/10.1109/ICSM.2002.1167777

11. Bibliography

[34] N. Boltz, M. Walter, and R. Heinrich. “Context-Based Con�dentiality Analysis

for Industrial IoT”. In: 2020 46th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA). 2020 46th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA). 2020, pp. 589–596.

[35] N. Boltz. “Architectural Uncertainty Analysis for Access Control Scenarios in

Industry 4.0”. Master’s Thesis. Karlsruhe Institute of Technology (KIT), 2021.

[36] N. Boltz, S. Hahner, C. Gerking, and R. Heinrich. “An Extensible Framework

for Architecture-Based Data Flow Analysis for Information Security”. In: Soft-
ware Architecture. ECSA 2023 Tracks, Workshops, and Doctoral Symposium. Springer

Nature Switzerland, 2024, pp. 342–358.

[37] N. Boltz, S. Hahner, M. Walter, S. Seifermann, R. Heinrich, T. Bures, and P. Hnetynka.

“Handling Environmental Uncertainty in Design Time Access Control Analysis”. In:

2022 48th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA). 2022 48th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA). IEEE, 2022, pp. 382–389.

[38] N. Boltz, L. Schmid, B. Taghavi, C. Gerking, and R. Heinrich. “Modeling and Ana-

lyzing Zero Trust Architectures Regarding Performance and Security”. In: Software
Architecture. Springer Nature Switzerland, 2024, pp. 253–269.

[39] N. Boltz, L. Sterz, C. Gerking, and O. Raabe. “A Model-Based Framework for Simpli-

�ed Collaboration of Legal and Software Experts in Data Protection Assessments”.

In: INFORMATIK 2022. Gesellschaft für Informatik, Bonn, 2022, pp. 521–532.

[40] H. de Bruijn, A. Größler, and N. Videira. “Antifragility as a design criterion for

modelling dynamic systems”. In: Systems Research and Behavioral Science 37.1

(2020), pp. 23–37.

[41] T. Bures, P. Hnetynka, R. Heinrich, S. Seifermann, and M. Walter. “Capturing

Dynamicity and Uncertainty in Security and Trust via Situational Patterns”. In:

Leveraging Applications of Formal Methods, Veri�cation and Validation: Engineering
Principles. Lecture Notes in Computer Science. Springer International Publishing,

2020, pp. 295–310.

[42] S. Burton, R. Calinescu, and R. Mirandola. “Resilience and Antifragility of Au-

tonomous Systems (Dagstuhl Seminar 24182)”. In: Dagstuhl Reports 14.4 (2024).

Place: Dagstuhl, Germany Publisher: Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, pp. 142–163.

[43] S. A. Busari and E. Letier. “RADAR: A Lightweight Tool for Requirements and

Architecture Decision Analysis”. In: 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE). 2017 IEEE/ACM 39th International Conference on

Software Engineering (ICSE). 2017, pp. 552–562.

[44] S. A. Busari. “Modelling and Analysing Software Requirements and Architecture

Decisions under Uncertainty”. Doctoral. UCL (University College London), 28, 2019.

364 pp.

254

http://dx.doi.org/10.1109/SEAA51224.2020.00096
http://dx.doi.org/10.1109/SEAA51224.2020.00096
http://dx.doi.org/10.5445/IR/1000135847
http://dx.doi.org/10.5445/IR/1000135847
http://dx.doi.org/10.1007/978-3-031-66326-0_21
http://dx.doi.org/10.1007/978-3-031-66326-0_21
http://dx.doi.org/10.1109/SEAA56994.2022.00067
http://dx.doi.org/10.1007/978-3-031-70797-1_17
http://dx.doi.org/10.1007/978-3-031-70797-1_17
https://dl.gi.de/handle/20.500.12116/39544
https://dl.gi.de/handle/20.500.12116/39544
http://dx.doi.org/10.1002/sres.2574
http://dx.doi.org/10.1002/sres.2574
http://dx.doi.org/10.1007/978-3-030-61470-6_18
http://dx.doi.org/10.1007/978-3-030-61470-6_18
http://dx.doi.org/10.4230/DagRep.14.4.142
http://dx.doi.org/10.4230/DagRep.14.4.142
http://dx.doi.org/10.1109/ICSE.2017.57
http://dx.doi.org/10.1109/ICSE.2017.57
https://discovery.ucl.ac.uk/id/eprint/10067421/
https://discovery.ucl.ac.uk/id/eprint/10067421/

11. Bibliography

[45] A. Busch, Y. Schneider, A. Koziolek, K. Rostami, and J. Kienzle. “Modelling the

Structure of Reusable Solutions for Architecture-Based Quality Evaluation”. In:

2016 IEEE International Conference on Cloud Computing Technology and Science
(CloudCom). 2016 IEEE International Conference on Cloud Computing Technology

and Science (CloudCom). 2016, pp. 521–526.

[46] K. Busch. An Architecture-based Approach for Change Impact Analysis of Software-
intensive Systems. Publication Title: KIT Scienti�c Publishing. KIT Scienti�c Pub-

lishing, 19, 2020.

[47] R. Calinescu, R. Mirandola, D. Perez-Palacin, and D. Weyns. “Understanding Un-

certainty in Self-adaptive Systems”. In: 2020 IEEE International Conference on Auto-
nomic Computing and Self-Organizing Systems (ACSOS). 2020 IEEE International

Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). 2020,

pp. 242–251.

[48] J. Camara, D. Garlan, W. G. Kang, W. Peng, and B. Schmerl. Uncertainty in Self-
Adaptive Systems: Categories, Management, and Perspectives. 1, 2017.

[49] J. Camara, S. Hahner, D. Perez-Palacin, A. Vallecillo, M. Acosta, N. Bencomo, R.

Calinescu, and S. Gerasimou. “Uncertainty Flow Diagrams: Towards a Systematic

Representation of Uncertainty Propagation and Interaction in Adaptive Systems”.

In: Proceedings of the 19th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. SEAMS ’24. Association for Computing Ma-

chinery, 7, 2024, pp. 37–43.

[50] J. Cámara, R. Calinescu, B. H. C. Cheng, D. Garlan, B. Schmerl, J. Troya, and A.

Vallecillo. “Addressing the uncertainty interaction problem in software-intensive

systems: challenges and desiderata”. In: Proceedings of the 25th International Confer-
ence on Model Driven Engineering Languages and Systems. MODELS ’22: ACM/IEEE

25th International Conference on Model Driven Engineering Languages and Sys-

tems. ACM, 23, 2022, pp. 24–30.

[51] J. Cámara, B. Schmerl, and D. Garlan. “Software architecture and task plan co-

adaptation for mobile service robots”. In: Proceedings of the IEEE/ACM 15th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems.
SEAMS ’20. Association for Computing Machinery, 18, 2020, pp. 125–136.

[52] J. Cámara, J. Troya, A. Vallecillo, N. Bencomo, R. Calinescu, B. H. C. Cheng, D.

Garlan, and B. Schmerl. “The uncertainty interaction problem in self-adaptive

systems”. In: Software and Systems Modeling 21.4 (1, 2022), pp. 1277–1294.

[53] G. Canfora, L. Sansone, and G. Visaggio. “Data �ow diagrams: reverse engineering

production and animation”. In: Proceedings Conference on Software Maintenance
1992. Proceedings Conference on Software Maintenance 1992. 1992, pp. 366–375.

[54] M. Cheminod, L. Durante, L. Seno, F. Valenza, and A. Valenzano. “A comprehensive

approach to the automatic re�nement and veri�cation of access control policies”.

In: Computers & Security 80 (1, 2019), pp. 186–199.

255

http://dx.doi.org/10.1109/CloudCom.2016.0091
http://dx.doi.org/10.1109/CloudCom.2016.0091
http://dx.doi.org/10.5445/KSP/1000098183
http://dx.doi.org/10.5445/KSP/1000098183
http://dx.doi.org/10.1109/ACSOS49614.2020.00047
http://dx.doi.org/10.1109/ACSOS49614.2020.00047
https://apps.dtic.mil/sti/citations/AD1086752
https://apps.dtic.mil/sti/citations/AD1086752
http://dx.doi.org/10.1145/3643915.3644084
http://dx.doi.org/10.1145/3643915.3644084
http://dx.doi.org/10.1145/3550355.3552438
http://dx.doi.org/10.1145/3550355.3552438
http://dx.doi.org/10.1145/3387939.3391591
http://dx.doi.org/10.1145/3387939.3391591
http://dx.doi.org/10.1007/s10270-022-01037-6
http://dx.doi.org/10.1007/s10270-022-01037-6
http://dx.doi.org/10.1109/ICSM.1992.242522
http://dx.doi.org/10.1109/ICSM.1992.242522
http://dx.doi.org/10.1016/j.cose.2018.09.013
http://dx.doi.org/10.1016/j.cose.2018.09.013

11. Bibliography

[55] L. Cheng, F. Liu, and D. Yao. “Enterprise data breach: causes, challenges, prevention,

and future directions”. In: WIREs Data Mining and Knowledge Discovery 7.5 (2017),

e1211.

[56] P.-C. Cheng, P. Rohatgi, C. Keser, P. A. Karger, G. M. Wagner, and A. S. Reninger.

“Fuzzy Multi-Level Security: An Experiment on Quanti�ed Risk-Adaptive Access

Control”. In: 2007 IEEE Symposium on Security and Privacy (SP ’07). 2007, pp. 222–

230.

[57] S.-W. Cheng, D. Garlan, and B. Schmerl. “Evaluating the e�ectiveness of the Rain-

bow self-adaptive system”. In: 2009 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems. 2009 ICSE Workshop on Software Engineering

for Adaptive and Self-Managing Systems. 2009, pp. 132–141.

[58] M. Colesky et al. “A system of privacy patterns for user control”. In: Proceedings of
the 33rd Annual ACM Symposium on Applied Computing. SAC ’18. 2018, pp. 1150–

1156.

[59] M. Colesky and J. C. Caiza. “A System of Privacy Patterns for Informing Users:

Creating a Pattern System”. In: Proceedings of the 23rd European Conference on
Pattern Languages of Programs. EuroPLoP ’18. 2018.

[60] E. Costante, F. Paci, and N. Zannone. “Privacy-Aware Web Service Composition

and Ranking”. In: 2013 IEEE 20th International Conference on Web Services. 2013

IEEE 20th International Conference on Web Services. 2013, pp. 131–138.

[61] R. Craven, J. Lobo, E. Lupu, A. Russo, and M. Sloman. “Policy re�nement: Decom-

position and operationalization for dynamic domains”. In: 2011 7th International
Conference on Network and Service Management. 2011 7th International Conference

on Network and Service Management. ISSN: 2165-963X. 2011, pp. 1–9.

[62] F. Cuppens and A. Miege. “Modelling contexts in the Or-BAC model”. In: 19th
Annual Computer Security Applications Conference, 2003. Proceedings. 19th Annual

Computer Security Applications Conference, 2003. Proceedings. 2003, pp. 416–425.

[63] R. De Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl,

G. Tamura, N. M. Villegas, T. Vogel, et al. “Software engineering for self-adaptive

systems: A second research roadmap”. In: Software Engineering for Self-Adaptive
Systems II: International Seminar, Dagstuhl Castle, Germany, October 24-29, 2010
Revised Selected and Invited Papers. Springer, 2013, pp. 1–32.

[64] T. DeMarco. “Structure analysis and system speci�cation”. In: Pioneers and Their
Contributions to Software Engineering. Springer, 1979, pp. 255–288.

[65] M. Derakhshanmanesh, J. Ebert, M. Grieger, and G. Engels. “Model-integrating de-

velopment of software systems: a �exible component-based approach”. In: Software
& Systems Modeling 18.4 (1, 2019), pp. 2557–2586.

[66] R. Diestel. Graph Theory. Vol. 173. Graduate Texts in Mathematics. Springer Berlin

Heidelberg, 2017.

[67] E. W. Dijkstra. Notes on structured programming. Second edition. T.H. - Report

70-WSK-03. 1970.

256

http://dx.doi.org/10.1002/widm.1211
http://dx.doi.org/10.1002/widm.1211
http://dx.doi.org/10.1109/SP.2007.21
http://dx.doi.org/10.1109/SP.2007.21
http://dx.doi.org/10.1109/SEAMS.2009.5069082
http://dx.doi.org/10.1109/SEAMS.2009.5069082
http://dx.doi.org/10.1145/3167132.3167257
http://dx.doi.org/10.1145/3282308.3282325
http://dx.doi.org/10.1145/3282308.3282325
http://dx.doi.org/10.1109/ICWS.2013.27
http://dx.doi.org/10.1109/ICWS.2013.27
http://dx.doi.org/10.1109/CSAC.2003.1254346
http://dx.doi.org/10.1007/s10270-018-0682-5
http://dx.doi.org/10.1007/s10270-018-0682-5
http://dx.doi.org/10.1007/978-3-662-53622-3

11. Bibliography

[68] C. Durugbo, J. Erkoyuncu, A. Tiwari, J. Alcock, R. Roy, and E. Shehab. “Data uncer-

tainty assessment and information �ow analysis for product-service systems in a

library case study”. In: International Journal of Services Operations and Informatics
5 (1, 2010), pp. 330–350.

[69] M. F. Enaya, T. Klingbeil, J. Krüger, D. Broneske, F. Feinbube, and G. Saake. “A

case study on the development of the German Corona-Warn-App”. In: Journal of
Systems and Software 213 (1, 2024), p. 112020.

[70] N. Esfahani, S. Malek, and K. Razavi. “GuideArch: Guiding the exploration of archi-

tectural solution space under uncertainty”. In: 2013 35th International Conference
on Software Engineering (ICSE). 2013 35th International Conference on Software

Engineering (ICSE). 2013, pp. 43–52.

[71] N. Esfahani and S. Malek. “Uncertainty in Self-Adaptive Software Systems”. In:

Software Engineering for Self-Adaptive Systems II: International Seminar, Dagstuhl
Castle, Germany, October 24-29, 2010 Revised Selected and Invited Papers. Lecture

Notes in Computer Science. Springer, 2013, pp. 214–238.

[72] N. Esfahani, K. Razavi, and S. Malek. “Dealing with uncertainty in early software

architecture”. In: Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering. FSE ’12. Association for Computing

Machinery, 11, 2012, pp. 1–4.

[73] C. of European Union. REGULATION (EU) 2016/679 (General Data Protection Regu-
lation). 2016. url: https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04

(visited on 01/19/2021).

[74] M. Famelis and M. Chechik. “Managing design-time uncertainty”. In: Software &
Systems Modeling 18.2 (1, 2019), pp. 1249–1284.

[75] E. B. Fernandez. “A methodology for secure software design”. In: Procs. of the 2004
Int. Conf. on Software Engineering Research and Practice (SERP’04. 2004, pp. 21–24.

[76] B. de Finetti. Theory of Probability: A critical introductory treatment. John Wiley &

Sons, 2017.

[77] D. Firesmith. “Specifying Reusable Security Requirements.” In: The Journal of Object
Technology 3.1 (2004), p. 61.

[78] FIRST. CVSS v4.0 Speci�cation Document. accessed 07/03/2024.

[79] O. Foundation. OWASP Top 10:2021. 2021. url: https://owasp.org/Top10/ (visited

on 04/30/2022).

[80] D. Garlan. “Software engineering in an uncertain world”. In: Proceedings of the
FSE/SDP workshop on Future of software engineering research - FoSER ’10. the

FSE/SDP workshop. ACM Press, 2010, p. 125.

[81] D. Garlan. “The Unknown Unknowns Are Not Totally Unknown”. In: 2021 Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS). 2021 International Symposium on Software Engineering for Adaptive

and Self-Managing Systems (SEAMS). ISSN: 2157-2321. 2021, pp. 264–265.

257

http://dx.doi.org/10.1504/IJSOI.2010.037002
http://dx.doi.org/10.1504/IJSOI.2010.037002
http://dx.doi.org/10.1504/IJSOI.2010.037002
http://dx.doi.org/10.1016/j.jss.2024.112020
http://dx.doi.org/10.1016/j.jss.2024.112020
http://dx.doi.org/10.1109/ICSE.2013.6606550
http://dx.doi.org/10.1109/ICSE.2013.6606550
https://doi.org/10.1007/978-3-642-35813-5_9
http://dx.doi.org/10.1145/2393596.2393621
http://dx.doi.org/10.1145/2393596.2393621
https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04
https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04
https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04
http://dx.doi.org/10.1007/s10270-017-0594-9
http://dx.doi.org/10.1002/9781119286387
http://dx.doi.org/10.5381/jot.2004.3.1.c6
https://www.first.org/cvss/v4.0/specification-document
https://owasp.org/Top10/
https://owasp.org/Top10/
http://dx.doi.org/10.1145/1882362.1882389
http://dx.doi.org/10.1109/SEAMS51251.2021.00047

11. Bibliography

[82] D. Garlan, S.-W. Cheng, A.-C. Huang, B. R. Schmerl, and P. Steenkiste. “Rainbow:

Architecture-Based Self-Adaptation with Reusable Infrastructure”. In: Computer
37.10 (2004), pp. 46–54.

[83] K. M. Gatzla� and K. A. McCullough. “The E�ect of Data Breaches on Shareholder

Wealth”. In: Risk Management and Insurance Review 13.1 (2010), pp. 61–83.

[84] G. Gehrig. “Enabling the Collaborative Collection of Uncertainty Sources Regarding

Con�dentiality”. Bachelor’s Thesis. Karlsruher Institut für Technologie (KIT), 2023.

56 pp.

[85] S. Gerasimou, R. Calinescu, and G. Tamburrelli. “Synthesis of probabilistic models

for quality-of-service software engineering”. In: Automated Software Engineering
25.4 (1, 2018), pp. 785–831.

[86] S. Gerdes, M. Soliman, and M. Riebisch. “Decision buddy: tool support for constraint-

based design decisions during system evolution”. In: 2015 1st InternationalWorkshop
on Future of Software Architecture Design Assistants (FoSADA). 2015 1st International

Workshop on Future of Software Architecture Design Assistants (FoSADA). 2015,

pp. 1–6.

[87] C. Gerking. “Model-Driven Information Flow Security Engineering for Cyber-

Physical Systems”. PhD thesis. 2020.

[88] C. Gerking, D. Schubert, and E. Bodden. “Model Checking the Information Flow

Security of Real-Time Systems”. In: Engineering Secure Software and Systems. Lecture

Notes in Computer Science. Springer International Publishing, 2018, pp. 27–43.

[89] GitHub. CodeQL. 2021. url: https://codeql.github.com/ (visited on 09/21/2024).

[90] GitHub. GitHub.com Documentation. accessed 04/29/2024. 2024.

[91] D. H.-L. Goh and P. K. Ng. “Link decay in leading information science journals”. In:

Journal of the American Society for Information Science and Technology 58.1 (2007),

pp. 15–24.

[92] A. Gorgeon. “Anti-Fragile Information Systems”. In: Proceedings of the International
Conference on Information Systems - Exploring the Information Frontier, ICIS 2015,
Fort Worth, Texas, USA, December 13-16, 2015. Association for Information Systems,

2015, p. 19.

[93] K. Goseva-Popstojanova and S. Kamavaram. “Assessing uncertainty in reliability

of component-based software systems”. In: ISSRE. 14th International Symposium

on Software Reliability Engineering, 2003. ISSRE 2003. 2003, pp. 307–320.

[94] V. Grassi and R. Mirandola. “The Tao way to anti-fragile software architectures: the

case of mobile applications”. In: 2021 IEEE 18th International Conference on Software
Architecture Companion (ICSA-C). 2021 IEEE 18th International Conference on

Software Architecture Companion (ICSA-C). IEEE, 2021, pp. 86–89.

[95] V. Grassi, R. Mirandola, and D. Perez-Palacin. “Towards a Conceptual Characteriza-

tion of Antifragile Systems”. In: 2023 IEEE 20th International Conference on Software
Architecture Companion (ICSA-C). 2023.

258

http://dx.doi.org/10.1109/MC.2004.175
http://dx.doi.org/10.1109/MC.2004.175
http://dx.doi.org/10.1111/j.1540-6296.2010.01178.x
http://dx.doi.org/10.1111/j.1540-6296.2010.01178.x
https://doi.org/10.5445/IR/1000164576
https://doi.org/10.5445/IR/1000164576
http://dx.doi.org/10.1007/s10515-018-0235-8
http://dx.doi.org/10.1007/s10515-018-0235-8
http://dx.doi.org/10.1007/978-3-319-94496-8_3
http://dx.doi.org/10.1007/978-3-319-94496-8_3
https://codeql.github.com/
https://codeql.github.com/
https://docs.github.com/
http://dx.doi.org/10.1002/asi.20513
http://dx.doi.org/10.1109/ISSRE.2003.1251052
http://dx.doi.org/10.1109/ISSRE.2003.1251052
http://dx.doi.org/10.1109/ICSA-C52384.2021.00021
http://dx.doi.org/10.1109/ICSA-C52384.2021.00021

11. Bibliography

[96] S. Gürses, J. H. Jahnke, C. Obry, A. Onabajo, T. Santen, and M. Price. “Eliciting

con�dentiality requirements in practice”. In: Proceedings of the 2005 conference of
the Centre for Advanced Studies on Collaborative research. 2005, pp. 101–116.

[97] S. Hahner. “Architectural Access Control Policy Re�nement and Veri�cation under

Uncertainty”. In:Companion Proceedings of the 15th European Conference on Software
Architecture (ECSA-C). 15th European Conference on Software Architecture (ECSA

2021). CEUR Workshop Proceedings, 2021, pp. 1–5.

[98] S. Hahner. Data Set: Architecture-Based and Uncertainty-Aware Con�dentiality Anal-
ysis. doi: 10.5281/zenodo.14796551. Zenodo, 2024.

[99] S. Hahner. “Dealing with Uncertainty in Architectural Con�dentiality Analysis”.

In: Proceedings of the Software Engineering 2021 Satellite Events. 8th Collaborative

Workshop on Evolution and Maintenance of Long-Living Software Systems (EMLS).

Gesellschaft für Informatik, 2021, pp. 1–6.

[100] S. Hahner. “Domain-speci�c Language for Data-driven Design Time Analyses

and Result Mappings for Logic Programs”. Master’s Thesis. Karlsruhe Institute of

Technology (KIT), 2020. 138 pp.

[101] S. Hahner, T. Bitschi, M. Walter, T. Bureš, P. Hnětynka, and R. Heinrich. “Model-

based Con�dentiality Analysis under Uncertainty”. In: 2023 IEEE 20th International
Conference on Software Architecture Companion (ICSA-C). 2023 IEEE 20th Inter-

national Conference on Software Architecture Companion (ICSA-C). IEEE, 2023,

pp. 256–263.

[102] S. Hahner, R. Heinrich, and R. Reussner. “Architecture-Based Uncertainty Impact

Analysis to Ensure Con�dentiality”. In: 2023 IEEE/ACM 18th Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). 2023 IEEE/ACM 18th

Symposium on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS). IEEE, 2023, pp. 126–132.

[103] S. Hahner, N. Niehues, N. Boltz, M. Fuksa, and R. Heinrich. “ARC3N: A Collaborative

Uncertainty Catalog to Address the Awareness Problem of Model-Based Con�-

dentiality Analysis”. In: ACM/IEEE 27th International Conference on Model Driven
Engineering Languages and Systems (MODELS Companion ’24). ACM/IEEE 27th

International Conference on Model Driven Engineering Languages and Systems.

ACM, 2024.

[104] S. Hahner, S. Seifermann, R. Heinrich, and R. Reussner. “A Classi�cation of Software-

Architectural Uncertainty Regarding Con�dentiality”. In: E-Business and Telecom-
munications. Communications in Computer and Information Science. Springer

Nature Switzerland, 2023, pp. 139–160.

[105] S. Hahner, S. Seifermann, R. Heinrich, M. Walter, T. Bureš, and P. Hnětynka. “Mod-

eling Data Flow Constraints for Design-Time Con�dentiality Analyses”. In: 2021
IEEE 18th International Conference on Software Architecture Companion (ICSA-C).
2021 IEEE 18th International Conference on Software Architecture (ICSA). IEEE,

2021, pp. 15–21.

259

http://dx.doi.org/10.5281/zenodo.14796551
http://dx.doi.org/10.5281/zenodo.14796551
http://dx.doi.org/10.5445/IR/1000123271
http://dx.doi.org/10.5445/IR/1000123271
http://dx.doi.org/10.1109/ICSA-C57050.2023.00062
http://dx.doi.org/10.1109/ICSA-C57050.2023.00062
http://dx.doi.org/10.1109/SEAMS59076.2023.00026
http://dx.doi.org/10.1109/SEAMS59076.2023.00026
http://dx.doi.org/10.1145/3652620.3688556
http://dx.doi.org/10.1145/3652620.3688556
http://dx.doi.org/10.1145/3652620.3688556
http://dx.doi.org/10.1007/978-3-031-36840-0_8
http://dx.doi.org/10.1007/978-3-031-36840-0_8
http://dx.doi.org/10.1109/ICSA-C52384.2021.00009
http://dx.doi.org/10.1109/ICSA-C52384.2021.00009

11. Bibliography

[106] S. Hahner, M. Walter, R. Heinrich, and R. Reussner. “Architecture-based Propagation

Analyses Regarding Security”. In: Software Engineering 2024. Software Engineering

2024 (SE 2024). Gesellschaft für Informatik e.V., 2024, pp. 121–122.

[107] N. B. Harrison and A. Aguiar. “The Nature of Questions that Arise During Software

Architecture Design”. In: Software Architecture. Springer Nature Switzerland, 2024,

pp. 37–52.

[108] T. Haselton. Yahoo just said every single account was a�ected by 2013 attack - 3
billion in all. CNBC. Section: Technology. 2017. url: https://www.cnbc.com/2017/

10/03/yahoo-every-single-account-3-billion-people-affected-in-2013-

attack.html (visited on 09/23/2024).

[109] Q. He and A. I. Antón. “Requirements-based Access Control Analysis and Policy

Speci�cation (ReCAPS)”. In: Information and Software Technology 51.6 (1, 2009),

pp. 993–1009.

[110] R. Heinrich, K. Busch, and S. Koch. “A Methodology for Domain-Spanning Change

Impact Analysis”. In: 2018 44th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA). 2018 44th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA). 2018, pp. 326–330.

[111] R. Heinrich, F. Durán, C. Talcott, and S. Zschaler. Composing Model-Based Analysis
Tools. Springer International Publishing, 2021.

[112] R. Heinrich, S. Koch, S. Cha, K. Busch, R. Reussner, and B. Vogel-Heuser. “Architecture-

based change impact analysis in cross-disciplinary automated production systems”.

In: Journal of Systems and Software 146 (2018), pp. 167–185.

[113] R. Heinrich, S. Seifermann, M. Walter, S. Hahner, R. Reussner, T. Bureš, P. Hnětynka,

and J. Pacovský. “Dynamic Access Control in Industry 4.0 Systems”. In: Digital
Transformation: Core Technologies and Emerging Topics from a Computer Science
Perspective. Springer, 2023, pp. 143–170.

[114] U. Hengartner and G. Zhong. “Distributed, Uncertainty-Aware Access Control for

Pervasive Computing”. In: Fifth Annual IEEE International Conference on Pervasive
Computing and Communications Workshops (PerComW’07). Fifth Annual IEEE In-

ternational Conference on Pervasive Computing and Communications Workshops

(PerComW’07). 2007, pp. 241–246.

[115] S. M. Hezavehi, D. Weyns, P. Avgeriou, R. Calinescu, R. Mirandola, and D. Perez-

Palacin. “Uncertainty in Self-adaptive Systems: A Research Community Perspec-

tive”. In: ACM Transactions on Autonomous and Adaptive Systems 15.4 (2021), 10:1–

10:36.

[116] H. H. Hosmer. “Using fuzzy logic to represent security policies in the multipolicy

paradigm”. In: ACM SIGSAC Review 10.4 (1992), pp. 12–21.

[117] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and K. Scarfone.

Guide to Attribute Based Access Control (ABAC) De�nition and Considerations. NIST

SP 800-162. National Institute of Standards and Technology, 2014, NIST SP 800–162.

260

http://dx.doi.org/10.18420/sw2024_38
http://dx.doi.org/10.18420/sw2024_38
http://dx.doi.org/10.1007/978-3-031-70797-1_3
http://dx.doi.org/10.1007/978-3-031-70797-1_3
https://www.cnbc.com/2017/10/03/yahoo-every-single-account-3-billion-people-affected-in-2013-attack.html
https://www.cnbc.com/2017/10/03/yahoo-every-single-account-3-billion-people-affected-in-2013-attack.html
https://www.cnbc.com/2017/10/03/yahoo-every-single-account-3-billion-people-affected-in-2013-attack.html
https://www.cnbc.com/2017/10/03/yahoo-every-single-account-3-billion-people-affected-in-2013-attack.html
https://www.cnbc.com/2017/10/03/yahoo-every-single-account-3-billion-people-affected-in-2013-attack.html
http://dx.doi.org/10.1016/j.infsof.2008.11.005
http://dx.doi.org/10.1016/j.infsof.2008.11.005
http://dx.doi.org/10.1109/SEAA.2018.00060
http://dx.doi.org/10.1109/SEAA.2018.00060
https://link.springer.com/10.1007/978-3-030-81915-6
https://link.springer.com/10.1007/978-3-030-81915-6
http://dx.doi.org/10.1016/j.jss.2018.08.058
http://dx.doi.org/10.1016/j.jss.2018.08.058
http://dx.doi.org/10.1007/978-3-662-65004-2_6
http://dx.doi.org/10.1109/PERCOMW.2007.39
http://dx.doi.org/10.1109/PERCOMW.2007.39
http://dx.doi.org/10.1145/3487921
http://dx.doi.org/10.1145/3487921
http://dx.doi.org/10.1145/152399.152403
http://dx.doi.org/10.1145/152399.152403
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf

11. Bibliography

[118] T. Hüller, F. Schwickerath, B. Arp, N. Niehues, N. Boltz, and S. Hahner. “To-

wards a Data Flow Diagram-Centric Con�dentiality Analysis in Palladio”. In:

Softwaretechnik-Trends Band 44, Heft 4. Gesellschaft für Informatik e.V., 2024.

[119] R. K. Institute. Open-Source Project Corona-Warn-App. 2020. url: https://www.

coronawarn.app/en/ (visited on 07/29/2021).

[120] International Organization for Standardization. ISO/IEC 27000:2018(E) Information
technology – Security techniques – Information security management systems –
Overview and vocabulary. Standard. 2018.

[121] International Organization for Standardization. ISO/IEC/IEEE 42010:2022 Software,
systems and enterprise - Architecture description. Standard. 2022.

[122] J. Isaak and M. J. Hanna. “User Data Privacy: Facebook, Cambridge Analytica, and

Privacy Protection”. In: Computer 51.8 (2018), pp. 56–59.

[123] M. Jackson. “The World and the Machine”. In: 1995 17th International Conference on
Software Engineering. 1995 17th International Conference on Software Engineering.

ISSN: 0270-5257. 1995, pp. 283–283.

[124] A. Jansen and J. Bosch. “Software Architecture as a Set of Architectural Design De-

cisions”. In: 5th Working IEEE/IFIP Conference on Software Architecture (WICSA’05).
5th Working IEEE/IFIP Conference on Software Architecture (WICSA’05). 2005,

pp. 109–120.

[125] A. Jansen. “Architectural design decisions”. PhD thesis. 2008.

[126] S. Jasser. “Constraining the Implementation Through Architectural Security Rules:

An Expert Study”. In: Product-Focused Software Process Improvement. Lecture Notes

in Computer Science. Springer International Publishing, 2019, pp. 203–219.

[127] S. Jasser and M. Riebisch. “Reusing security solutions: a repository for architectural

decision support”. In: Proccedings of the 10th European Conference on Software
Architecture Workshops. ECSAW ’16. Association for Computing Machinery, 28,

2016, pp. 1–7.

[128] JCGM 100:2008. Evaluation of measurement data—Guide to the expression of uncer-
tainty in measurement (GUM). ISO Joint Com. for Guides in Metrology, 2008.

[129] J. Juerjens. “Principles for secure systems design”. PhD thesis. University of Oxford,

2002.

[130] J. Jürjens. “Towards Development of Secure Systems Using UMLsec”. In: Funda-
mental Approaches to Software Engineering. Red. by G. Goos, J. Hartmanis, and

J. van Leeuwen. Springer Berlin Heidelberg, 2001, pp. 187–200.

[131] J. Jürjens. “UMLsec: Extending UML for Secure Systems Development”. In: UML
2002 — The Uni�ed Modeling Language. Red. by G. Goos, J. Hartmanis, and J. van

Leeuwen. Vol. 2460. Springer Berlin Heidelberg, 2002, pp. 412–425.

[132] A. Kaplan, T. Kühn, S. Hahner, N. Benkler, J. Keim, D. Fuchß, S. Corallo, and R.

Heinrich. “Introducing an Evaluation Method for Taxonomies”. In: Proceedings of
the International Conference on Evaluation and Assessment in Software Engineering
2022. EASE ’22. ACM, 2022, pp. 311–316.

261

https://dl.gi.de/handle/20.500.12116/45518
https://dl.gi.de/handle/20.500.12116/45518
https://www.coronawarn.app/en/
https://www.coronawarn.app/en/
https://www.coronawarn.app/en/
http://dx.doi.org/10.1109/MC.2018.3191268
http://dx.doi.org/10.1109/MC.2018.3191268
http://dx.doi.org/10.1145/225014.225041
http://dx.doi.org/10.1109/WICSA.2005.61
http://dx.doi.org/10.1109/WICSA.2005.61
http://dx.doi.org/10.1007/978-3-030-35333-9_15
http://dx.doi.org/10.1007/978-3-030-35333-9_15
http://dx.doi.org/10.1145/2993412.3007556
http://dx.doi.org/10.1145/2993412.3007556
http://link.springer.com/10.1007/3-540-45314-8_14
http://link.springer.com/10.1007/3-540-45800-X_32
http://dx.doi.org/10.1145/3530019.3535305

11. Bibliography

[133] K. Katkalov. “Ein modellgetriebener Ansatz zur Entwicklung informations�usssicherer

Systeme”. PhD thesis. University of Augsburg, 2017.

[134] K. Katkalov. Modeling the Travel Planner Application with IFlow. 2013. url: https:

//kiv.isse.de/projects/iflow/TravelPlannerSite/index.html (visited on

08/15/2024).

[135] K. Katkalov, K. Stenzel, M. Borek, and W. Reif. “Model-Driven Development of

Information Flow-Secure Systems with IFlow”. In: 2013 International Conference on
Social Computing. IEEE, 2013, pp. 51–56.

[136] J. Kephart and D. Chess. “The vision of autonomic computing”. In: Computer 36.1

(2003). Conference Name: Computer, pp. 41–50.

[137] A. D. Kiureghian and O. Ditlevsen. “Aleatory or epistemic? Does it matter?” In:

Structural Safety. Risk Acceptance and Risk Communication 31.2 (1, 2009), pp. 105–

112.

[138] M. B. Kjærgaard, H. Blunck, T. Godsk, T. Toftkjær, D. L. Christensen, and K. Grøn-

bæk. “Indoor Positioning Using GPS Revisited”. In: Pervasive Computing. Springer,

2010, pp. 38–56.

[139] H. Klare, M. E. Kramer, M. Langhammer, D. Werle, E. Burger, and R. Reussner. “En-

abling consistency in view-based system development — The Vitruvius approach”.

In: Journal of Systems and Software 171 (1, 2021), p. 110815.

[140] G. Klir and B. Yuan. Fuzzy sets and fuzzy logic. Vol. 4. Prentice hall New Jersey,

1995.

[141] D. E. Knuth. The art of computer programming, volume 1 (3rd ed.): fundamental
algorithms. Addison Wesley Longman Publishing Co., Inc., 1997.

[142] M. Konersmann, A. Kaplan, T. Kühn, R. Heinrich, A. Koziolek, R. Reussner, J. Jür-

jens, M. al-Doori, N. Boltz, M. Ehl, D. Fuchs, K. Groser, S. Hahner, J. Keim, M. Lohr,

T. Sağlam, S. Schulz, and J.-P. Töberg. “Evaluation Methods and Replicability of

Software Architecture Research Objects”. In: 2022 IEEE 19th International Confer-
ence on Software Architecture (ICSA). 2022 IEEE 19th International Conference on

Software Architecture (ICSA). IEEE, 2022, pp. 157–168.

[143] A. Koziolek. “Automated Improvement of Software Architecture Models for Per-

formance and Other Quality Attributes”. PhD thesis. 2011.

[144] A. Koziolek, H. Koziolek, and R. Reussner. “PerOpteryx: automated application of

tactics in multi-objective software architecture optimization”. In: Proceedings of the
joint ACM SIGSOFT conference – QoSA and ACM SIGSOFT symposium – ISARCS on
Quality of software architectures – QoSA and architecting critical systems – ISARCS.

QoSA-ISARCS ’11. Association for Computing Machinery, 20, 2011, pp. 33–42.

[145] H. Koziolek. “Performance evaluation of component-based software systems: A

survey”. In: Performance Evaluation. Special Issue on Software and Performance

67.8 (1, 2010), pp. 634–658.

262

https://kiv.isse.de/projects/iflow/TravelPlannerSite/index.html
https://kiv.isse.de/projects/iflow/TravelPlannerSite/index.html
https://kiv.isse.de/projects/iflow/TravelPlannerSite/index.html
http://dx.doi.org/10.1109/SocialCom.2013.14
http://dx.doi.org/10.1109/SocialCom.2013.14
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1016/j.strusafe.2008.06.020
http://dx.doi.org/10.1007/978-3-642-12654-3_3
http://dx.doi.org/10.1016/j.jss.2020.110815
http://dx.doi.org/10.1016/j.jss.2020.110815
http://dx.doi.org/10.1109/ICSA53651.2022.00023
http://dx.doi.org/10.1109/ICSA53651.2022.00023
http://dx.doi.org/10.5445/IR/1000024955
http://dx.doi.org/10.5445/IR/1000024955
http://dx.doi.org/10.1145/2000259.2000267
http://dx.doi.org/10.1145/2000259.2000267
http://dx.doi.org/10.1016/j.peva.2009.07.007
http://dx.doi.org/10.1016/j.peva.2009.07.007

11. Bibliography

[146] H. Koziolek. Tracing the Practical Impact of Software Architecture Research. Medium.

2022. url: https://medium.com/@heiko.koziolek/tracing- the- practical-

impact-of-software-architecture-research-a2b91136455 (visited on 10/07/2024).

[147] M. E. Kramer, M. Hecker, S. Greiner, K. Bao, and K. Yurchenko. Model-Driven
Speci�cation and Analysis of Con�dentiality in Component-Based Systems. 2017.

[148] R. Kramer, R. Gupta, and M. So�a. “The combining DAG: a technique for parallel

data �ow analysis”. In: IEEE Transactions on Parallel and Distributed Systems 5.8

(1994). Conference Name: IEEE Transactions on Parallel and Distributed Systems,

pp. 805–813.

[149] P. Kruchten. “The 4+1 View Model of architecture”. In: IEEE Software 12.6 (1995).

Conference Name: IEEE Software, pp. 42–50.

[150] P. Kruchten. “An Ontology of Architectural Design Decisions in Software-Intensive

Systems”. In: Proceedings of the 2nd Groningen Workshop on Software Variability
Management (2004).

[151] J. Kunz. “E�cient Data Flow Constraint Analysis”. Master’s Thesis. Karlsruhe

Institute of Technology (KIT), 2018.

[152] M. Leinweber, N. Kannengießer, H. Hartenstein, and A. Sunyaev. “Leveraging

Distributed Ledger Technology for Decentralized Mobility-as-a-Service Ticket Sys-

tems”. In: Towards the NewNormal inMobility: Technische und betriebswirtschaftliche
Aspekte. Springer Fachmedien, 2023, pp. 547–567.

[153] J. R. Lewis. “The system usability scale: past, present, and future”. In: International
Journal of Human–Computer Interaction 34.7 (2018). Publisher: Taylor & Francis,

pp. 577–590.

[154] Linying Su, D. W. Chadwick, A. Basden, and J. A. Cunningham. “Automated de-

composition of access control policies”. In: Sixth IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY’05). Sixth IEEE International

Workshop on Policies for Distributed Systems and Networks (POLICY’05). 2005,

pp. 3–13.

[155] O. Liu. “Design Space Evaluation for Con�dentiality under Architectural Uncer-

tainty”. Bachelor’s Thesis. Karlsruhe Institute of Technology (KIT), 2021.

[156] M. Lochau, S. Oster, U. Goltz, and A. Schürr. “Model-based pairwise testing for

feature interaction coverage in software product line engineering”. In: Software
Quality Journal 20.3 (1, 2012), pp. 567–604.

[157] T. Lodderstedt, D. Basin, and J. Doser. “SecureUML: A UML-Based Modeling Lan-

guage for Model-Driven Security”. In: UML 2002 — The Uni�ed Modeling Language.
Lecture Notes in Computer Science. Springer, 2002, pp. 426–441.

[158] C. Lupafya and D. Balasubramaniam. “A Framework for Considering Uncertainty

in Software Systems”. In: 2022 IEEE 46th Annual Computers, Software, and Applica-
tions Conference (COMPSAC). 2022 IEEE 46th Annual Computers, Software, and

Applications Conference (COMPSAC). 2022, pp. 1519–1524.

263

https://medium.com/@heiko.koziolek/tracing-the-practical-impact-of-software-architecture-research-a2b91136455
https://medium.com/@heiko.koziolek/tracing-the-practical-impact-of-software-architecture-research-a2b91136455
https://medium.com/@heiko.koziolek/tracing-the-practical-impact-of-software-architecture-research-a2b91136455
https://doi.org/10.5445/IR/1000076957
https://doi.org/10.5445/IR/1000076957
http://dx.doi.org/10.1109/71.298205
http://dx.doi.org/10.1109/71.298205
http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1007/978-3-658-39438-7_32
http://dx.doi.org/10.1007/978-3-658-39438-7_32
http://dx.doi.org/10.1007/978-3-658-39438-7_32
http://dx.doi.org/10.1080/10447318.2018.1455307
http://dx.doi.org/10.1109/POLICY.2005.10
http://dx.doi.org/10.1109/POLICY.2005.10
https://doi.org/10.5445/IR/1000139590
https://doi.org/10.5445/IR/1000139590
http://dx.doi.org/10.1007/s11219-011-9165-4
http://dx.doi.org/10.1007/s11219-011-9165-4
http://dx.doi.org/10.1007/3-540-45800-X_33
http://dx.doi.org/10.1007/3-540-45800-X_33
http://dx.doi.org/10.1109/COMPSAC54236.2022.00241
http://dx.doi.org/10.1109/COMPSAC54236.2022.00241

11. Bibliography

[159] I. Lytra and U. Zdun. “Supporting architectural decision making for systems-of-

systems design under uncertainty”. In: Proceedings of the First International Work-
shop on Software Engineering for Systems-of-Systems. SESoS ’13. Association for

Computing Machinery, 2, 2013, pp. 43–46.

[160] C. Maeder, K. Sohr, R. Wete Nguempnang, N. Meyer-Larsen, and R. Müller. “Mod-

eling and Validating Role-Based Authorization Policies for a Port Communication

System with UML and OCL.” In: The Journal of Object Technology 19.3 (2020), 3:1.

[161] P. N. Mahalle, P. A. Thakre, N. R. Prasad, and R. Prasad. “A fuzzy approach to trust

based access control in internet of things”. In: Wireless VITAE 2013. Wireless VITAE

2013. 2013, pp. 1–5.

[162] S. Mahdavi-Hezavehi, P. Avgeriou, and D. Weyns. “A Classi�cation Framework of

Uncertainty in Architecture-Based Self- Adaptive Systems with Multiple Quality

Requirements”. In: Managing Trade-O�s in Adaptable Software Architectures (2017),

p. 33.

[163] A. Martens, H. Koziolek, S. Becker, and R. Reussner. “Automatically improve soft-

ware architecture models for performance, reliability, and cost using evolutionary

algorithms”. In: Proceedings of the �rst joint WOSP/SIPEW international conference on
Performance engineering. WOSP/SIPEW ’10. Association for Computing Machinery,

28, 2010, pp. 105–116.

[164] R. C. Martin. Clean Architecture: A Craftsman’s Guide to Software Structure and
Design. Robert C. Martin Series. Prentice Hall, 2017.

[165] C. Martínez-García, G. Navarro-Arribas, and J. Borrell. “Fuzzy Role-Based Access

Control”. In: Information Processing Letters 111.10 (2011), pp. 483–487.

[166] F. Massacci and N. Zannone. “A Model-Driven Approach for the Speci�cation and

Analysis of Access Control Policies”. In: On the Move to Meaningful Internet Systems:
OTM 2008. Lecture Notes in Computer Science. Springer, 2008, pp. 1087–1103.

[167] S. McConnell. Software project survival guide. Microsoft Press, 1998.

[168] P. Mehl and M. Walter. Palladio Addon: Uncertainty-VariationCreation. 2022. url:

https://github.com/FluidTrust/Palladio-Addons-Uncertainty-VariationCreation

(visited on 11/28/2022).

[169] D. Mery and S. Merz. “Speci�cation and Re�nement of Access Control”. In: (2007),

p. 21.

[170] Meta. Introducing Meta Llama 3: The most capable openly available LLM to date.
Meta AI. 2024. url: https://ai.meta.com/blog/meta- llama- 3/ (visited on

09/23/2024).

[171] S. Migliorini, R. Verdecchia, I. Malavolta, P. Lago, and E. Vicario. “Architectural

Views: The State of Practice in Open-Source Software Projects”. In: Software Archi-
tecture. Springer Nature Switzerland, 2024, pp. 396–415.

[172] I. Molloy, L. Dickens, C. Morisset, P.-.-c. Cheng, J. Lobo, and A. Russo. “Risk-based

access control decisions under uncertainty”. In: Computer Science. 1, 2012.

264

http://dx.doi.org/10.1145/2489850.2489859
http://dx.doi.org/10.1145/2489850.2489859
http://dx.doi.org/10.5381/jot.2020.19.3.a8
http://dx.doi.org/10.5381/jot.2020.19.3.a8
http://dx.doi.org/10.5381/jot.2020.19.3.a8
http://dx.doi.org/10.1109/VITAE.2013.6617083
http://dx.doi.org/10.1109/VITAE.2013.6617083
http://dx.doi.org/10.1145/1712605.1712624
http://dx.doi.org/10.1145/1712605.1712624
http://dx.doi.org/10.1145/1712605.1712624
http://dx.doi.org/10.1016/j.ipl.2011.02.010
http://dx.doi.org/10.1016/j.ipl.2011.02.010
http://dx.doi.org/10.1007/978-3-540-88873-4_11
http://dx.doi.org/10.1007/978-3-540-88873-4_11
https://github.com/FluidTrust/Palladio-Addons-Uncertainty-VariationCreation
https://github.com/FluidTrust/Palladio-Addons-Uncertainty-VariationCreation
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
http://dx.doi.org/10.1007/978-3-031-70797-1_27
http://dx.doi.org/10.1007/978-3-031-70797-1_27

11. Bibliography

[173] O. de Moor, D. Sereni, M. Verbaere, E. Hajiyev, P. Avgustinov, T. Ekman, N. Ongk-

ingco, and J. Tibble. “.QL: Object-Oriented Queries Made Easy”. In: Generative
and Transformational Techniques in Software Engineering II: International Summer
School, GTTSE 2007, Braga, Portugal, July 2-7, 2007. Revised Papers. Lecture Notes

in Computer Science. Springer, 2008, pp. 78–133.

[174] A. Morali, E. Zambon, S. Etalle, and P. Overbeek. “IT con�dentiality risk assessment

for an architecture-based approach”. In: 2008 3rd IEEE/IFIP International Workshop
on Business-driven IT Management. 2008 3rd IEEE/IFIP International Workshop on

Business-driven IT Management. 2008, pp. 31–40.

[175] C. Morris. Massive data leak exposes 700 million LinkedIn users’ information. Fortune.

2021. url: https://fortune.com/2021/06/30/linkedin- data- theft- 700-

million-users-personal-information-cybersecurity/ (visited on 09/23/2024).

[176] J. von Neumann and O. Morgenstern. “Theory of Games and Economic Behavior”.

In: Theory of Games and Economic Behavior. 1944.

[177] P. H. Nguyen, M. Kramer, J. Klein, and Y. L. Traon. “An extensive systematic review

on the Model-Driven Development of secure systems”. In: Information and Software
Technology 68 (1, 2015), pp. 62–81.

[178] Q. Ni, E. Bertino, and J. Lobo. “Risk-based access control systems built on fuzzy

inferences”. In: Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security. ASIACCS ’10. Association for Computing Machinery,

2010, pp. 250–260.

[179] N. Niehues, B. Arp, T. Hüller, F. Schwickerath, N. Boltz, and S. Hahner. “Integrating

Security-Enriched Data Flow Diagrams Into Architecture-Based Con�dentiality

Analysis”. In: Softwaretechnik-Trends Band 44, Heft 4. Gesellschaft für Informatik

e.V., 2024.

[180] N. Niehues, S. Hahner, and R. Heinrich. “An Architecture-Based Approach to

Mitigate Con�dentiality Violations Using Machine Learning”. In: 2025 IEEE 22nd
International Conference on Software Architecture (ICSA). 2025 IEEE 22nd Inter-

national Conference on Software Architecture (ICSA). accepted, to appear. IEEE,

2025.

[181] Noppen, J.A.R., van den Broek, P.M., and Aksit, Mehmet. “Software development

with imperfect information”. In: Soft computing 12.1 (2008). Publisher: Springer,

pp. 3–28.

[182] OASIS. eXtensible Access Control Markup Language (XACML) Version 3.0. 2013. url:

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

(visited on 12/22/2021).

[183] Object Management Group. OMG Systems Modeling Language (SysML), version 2.0.

2023.

[184] Object Management Group. Precise Semantics for Uncertainty Modeling (PSUM),
Version 1.0 Beta 2. 2024.

265

http://dx.doi.org/10.1007/978-3-540-88643-3_3
http://dx.doi.org/10.1109/BDIM.2008.4540072
http://dx.doi.org/10.1109/BDIM.2008.4540072
https://fortune.com/2021/06/30/linkedin-data-theft-700-million-users-personal-information-cybersecurity/
https://fortune.com/2021/06/30/linkedin-data-theft-700-million-users-personal-information-cybersecurity/
https://fortune.com/2021/06/30/linkedin-data-theft-700-million-users-personal-information-cybersecurity/
http://dx.doi.org/10.1016/j.infsof.2015.08.006
http://dx.doi.org/10.1016/j.infsof.2015.08.006
http://dx.doi.org/10.1145/1755688.1755719
http://dx.doi.org/10.1145/1755688.1755719
https://dl.gi.de/handle/20.500.12116/45546
https://dl.gi.de/handle/20.500.12116/45546
https://dl.gi.de/handle/20.500.12116/45546
http://dx.doi.org/10.1007/s00500-007-0214-7
http://dx.doi.org/10.1007/s00500-007-0214-7
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://www.omg.org/spec/PSUM/1.0/Beta2/PDF
https://www.omg.org/spec/PSUM/1.0/Beta2/PDF

11. Bibliography

[185] Object Management Group. UML Pro�le for MARTE: Modeling and Analysis of
Real-Time Embedded Systems. Version 1.1. 2011.

[186] Object Management Group. Uni�ed Modeling Language (UML) Speci�cation. Version
2.5. 2015.

[187] M. A. Olivero, A. Bertolino, F. J. Dominguez-Mayo, M. J. Escalona, and I. Matteucci.

“Security Assessment of Systems of Systems”. In: 2019 IEEE/ACM 7th International
Workshop on Software Engineering for Systems-of-Systems (SESoS) and 13thWorkshop
on Distributed Software Development, Software Ecosystems and Systems-of-Systems
(WDES). 2019 IEEE/ACM 7th International Workshop on Software Engineering

for Systems-of-Systems (SESoS) and 13th Workshop on Distributed Software De-

velopment, Software Ecosystems and Systems-of-Systems (WDES). 2019, pp. 62–

65.

[188] OMG. About the Meta Object Facility Speci�cation Version 2.5.1. 2016.

[189] A. Onabajo and J. Jahnke. “Properties of Con�dentiality Requirements”. In: 19th
IEEE Symposium on Computer-Based Medical Systems (CBMS’06). 19th IEEE Sympo-

sium on Computer-Based Medical Systems (CBMS’06). 2006, pp. 841–846.

[190] F. Oquendo. “Coping with Uncertainty in Systems-of-Systems Architecture Model-

ing on the IoT with SosADL”. In: 2019 14th Annual Conference System of Systems
Engineering (SoSE). 2019 14th Annual Conference System of Systems Engineering

(SoSE). 2019, pp. 131–136.

[191] S. Oster, M. Zink, M. Lochau, and M. Grechanik. “Pairwise feature-interaction

testing for SPLs: potentials and limitations”. In: Proceedings of the 15th International
Software Product Line Conference, Volume 2. SPLC ’11. Association for Computing

Machinery, 21, 2011, pp. 1–8.

[192] OWASP Foundation. OWASP Top 10:2021. accessed 05/11/2022. 2021.

[193] S. Peldszus, K. Tuma, D. Struber, J. Jurjens, and R. Scandariato. “Secure Data-Flow

Compliance Checks between Models and Code Based on Automated Mappings”.

In: 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering

Languages and Systems (MODELS). IEEE, 2019, pp. 23–33.

[194] D. Perez-Palacin and R. Mirandola. “Dealing with uncertainties in the performance

modelling of software systems”. In: Proceedings of the 10th international ACM
Sigsoft conference on Quality of software architectures. QoSA ’14. Association for

Computing Machinery, 2014, pp. 33–42.

[195] D. Perez-Palacin and R. Mirandola. “Uncertainties in the modeling of self-adaptive

systems: a taxonomy and an example of availability evaluation”. In: Proceedings of
the 5th ACM/SPEC international conference on Performance engineering. ICPE ’14.

Association for Computing Machinery, 2014, pp. 3–14.

[196] R. Pilipchuk. “Architectural Alignment of Access Control Requirements Extracted

from Business Processes”. Dissertation. Karlsruhe Institute of Technology (KIT),

2021.

266

http://dx.doi.org/10.1109/SESoS/WDES.2019.00017
https://www.omg.org/spec/MOF
http://dx.doi.org/10.1109/CBMS.2006.133
http://dx.doi.org/10.1109/SYSOSE.2019.8753842
http://dx.doi.org/10.1109/SYSOSE.2019.8753842
http://dx.doi.org/10.1145/2019136.2019143
http://dx.doi.org/10.1145/2019136.2019143
https://owasp.org/Top10/
http://dx.doi.org/10.1109/MODELS.2019.00-18
http://dx.doi.org/10.1109/MODELS.2019.00-18
http://dx.doi.org/10.1145/2602576.2602582
http://dx.doi.org/10.1145/2602576.2602582
http://dx.doi.org/10.1145/2568088.2568095
http://dx.doi.org/10.1145/2568088.2568095
https://doi.org/10.5445/IR/1000140856
https://doi.org/10.5445/IR/1000140856

11. Bibliography

[197] R. Pilipchuk, S. Seifermann, and R. Heinrich. “Aligning Business Process Access

Control Policies with Enterprise Architecture”. In: Proceedings of the Central Eu-
ropean Cybersecurity Conference 2018. CECC 2018. Association for Computing

Machinery, 15, 2018, pp. 1–4.

[198] D. M. W. Powers. “Evaluation: from precision, recall and F-measure to ROC, in-

formedness, markedness and correlation”. In: CoRR abs/2010.16061 (2011).

[199] L. Prechelt, G. Malpohl, M. Philippsen, et al. “Finding plagiarisms among a set of

programs with JPlag”. In: Journal of Universal Computer Science 8.11 (2002).

[200] D. Priss. “A Mobility Case Study Framework for Validating Uncertainty Impact

Analyses regarding Con�dentiality”. Bachelor’s Thesis. Karlsruhe Institute of Tech-

nology (KIT), 2022.

[201] J. Ramezani and L. M. Camarinha-Matos. “Approaches for resilience and an-

tifragility in collaborative business ecosystems”. In: Technological Forecasting and
Social Change 151 (2020), p. 119846.

[202] A. J. Ramirez, A. C. Jensen, and B. H. C. Cheng. “A taxonomy of uncertainty for

dynamically adaptive systems”. In: 2012 7th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). 2012 7th International

Symposium on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS). 2012, pp. 99–108.

[203] The Common Component Modeling Example: Comparing Software Component Models.
Red. by D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,

M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Ste�en, M. Sudan, D. Terzopoulos, D.

Tygar, M. Y. Vardi, and G. Weikum. Vol. 5153. Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2008.

[204] F. Reiche, J. Schi�, B. Beckert, R. Heinrich, and R. Reussner. Modeling and Verifying
Access Control for Ethereum Smart Contracts. 2021.

[205] R. Reussner. The Palladio Approach. Modeling and Simulating Software Architec-

tures. 2024. url: https://www.palladio-simulator.com/ (visited on 07/11/2024).

[206] R. Reussner, S. Becker, E. Burger, J. Happe, M. Hauck, A. Koziolek, H. Koziolek,

K. Krogmann, and M. Kuperberg. The Palladio Component Model. 2011. url: https:

//publikationen.bibliothek.kit.edu/1000022503 (visited on 07/01/2021).

[207] R. H. Reussner, S. Becker, J. Happe, R. Heinrich, A. Koziolek, H. Koziolek, M. Kramer,

and K. Krogmann. Modeling and Simulating Software Architectures: The Palladio
Approach. The MIT Press, 2016.

[208] C. J. van Rijsbergen. Information Retrieval. 2nd ed. Butterworths, 1979.

[209] R. C. Rønneberg.Quantitative Information FlowControl by Construction for Component-
Based Systems. 15, 2024. arXiv: 2401.07677[cs].

[210] K. Rostami, R. Heinrich, A. Busch, and R. Reussner. “Architecture-Based Change

Impact Analysis in Information Systems and Business Processes”. In: 2017 IEEE
International Conference on Software Architecture (ICSA). 2017 IEEE International

Conference on Software Architecture (ICSA). 2017, pp. 179–188.

267

http://dx.doi.org/10.1145/3277570.3277588
http://dx.doi.org/10.1145/3277570.3277588
https://arxiv.org/abs/2010.16061
https://arxiv.org/abs/2010.16061
https://doi.org/10.5445/IR/1000153083
https://doi.org/10.5445/IR/1000153083
http://dx.doi.org/10.1016/j.techfore.2019.119846
http://dx.doi.org/10.1016/j.techfore.2019.119846
http://dx.doi.org/10.1109/SEAMS.2012.6224396
http://dx.doi.org/10.1109/SEAMS.2012.6224396
http://link.springer.com/10.1007/978-3-540-85289-6
http://dx.doi.org/10.5445/IR/1000129607
http://dx.doi.org/10.5445/IR/1000129607
https://www.palladio-simulator.com/
https://www.palladio-simulator.com/
https://publikationen.bibliothek.kit.edu/1000022503
https://publikationen.bibliothek.kit.edu/1000022503
https://publikationen.bibliothek.kit.edu/1000022503
http://dx.doi.org/10.48550/arXiv.2401.07677
http://dx.doi.org/10.48550/arXiv.2401.07677
https://arxiv.org/abs/2401.07677 [cs]
http://dx.doi.org/10.1109/ICSA.2017.17
http://dx.doi.org/10.1109/ICSA.2017.17

11. Bibliography

[211] K. Rostami, J. Stammel, R. Heinrich, and R. Reussner. “Architecture-based Assess-

ment and Planning of Change Requests”. In: Proceedings of the 11th International
ACM SIGSOFT Conference on Quality of Software Architectures. CompArch ’15: Feder-

ated Events on Component-Based Software Engineering and Software Architecture.

ACM, 4, 2015, pp. 21–30.

[212] P. Runeson and M. Höst. “Guidelines for conducting and reporting case study

research in software engineering”. In: Empirical software engineering 14.2 (2009),

p. 131.

[213] T. Sağlam, M. Brödel, L. Schmid, and S. Hahner. “Detecting Automatic Software

Plagiarism via Token Sequence Normalization”. In: Proceedings of the IEEE/ACM
46th International Conference on Software Engineering. ICSE ’24. Association for

Computing Machinery, 12, 2024, pp. 1–13.

[214] T. Sağlam, S. Hahner, D. Fuchß, and L. Schmid. JPlag: State-of-the-Art Software
Plagiarism & Collusion Detection. 2024. url: https://github.com/jplag/jplag

(visited on 08/14/2024).

[215] T. Sağlam, S. Hahner, L. Schmid, and E. Burger. “Automated Detection of AI-

Obfuscated Plagiarism in Modeling Assignments”. In: Proceedings of the 46th Inter-
national Conference on Software Engineering: Software Engineering Education and
Training. ICSE-SEET ’24. Association for Computing Machinery, 2024, pp. 297–308.

[216] T. Sağlam, S. Hahner, L. Schmid, and E. Burger. “Obfuscation-Resilient Software

Plagiarism Detection with JPlag”. In: Proceedings of the 2024 IEEE/ACM 46th In-
ternational Conference on Software Engineering: Companion Proceedings. ICSE-

Companion ’24. Association for Computing Machinery, 2024, pp. 264–265.

[217] T. Sağlam, S. Hahner, J. W. Wittler, and T. Kühn. “Token-based plagiarism detection

for metamodels”. In: Proceedings of the 25th International Conference onModel Driven
Engineering Languages and Systems: Companion Proceedings. 25th International

Conference on Model Driven Engineering Languages and Systems (MODELS).

MODELS ’22. ACM, 2022, pp. 138–141.

[218] T. Sağlam, N. Niehues, S. Hahner, and L. Schmid. “Mitigating Obfuscation Attacks

on Software Plagiarism Detectors via Subsequence Merging”. In: IEEE Conference

on Software Engineering Education and Training (CSEE&T). accepted, to appear.

IEEE, 2025.

[219] T. Sağlam, L. Schmid, S. Hahner, and E. Burger. “How Students Plagiarize Mod-

eling Assignments”. In: 2023 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C). 2023 ACM/IEEE In-

ternational Conference on Model Driven Engineering Languages and Systems

Companion (MODELS-C). ACM, 2023, pp. 98–101.

[220] F. Salim, J. Reid, E. Dawson, and U. Dulleck. “An Approach to Access Control under

Uncertainty”. In: 2011 Sixth International Conference on Availability, Reliability
and Security. 2011 Sixth International Conference on Availability, Reliability and

Security. 2011, pp. 1–8.

268

http://dx.doi.org/10.1145/2737182.2737198
http://dx.doi.org/10.1145/2737182.2737198
http://dx.doi.org/10.1145/3597503.3639192
http://dx.doi.org/10.1145/3597503.3639192
https://github.com/jplag/jplag
https://github.com/jplag/jplag
https://github.com/jplag/jplag
http://dx.doi.org/10.1145/3639474.3640084
http://dx.doi.org/10.1145/3639474.3640084
http://dx.doi.org/10.1145/3639478.3643074
http://dx.doi.org/10.1145/3639478.3643074
http://dx.doi.org/10.1145/3550356.3556508
http://dx.doi.org/10.1145/3550356.3556508
http://dx.doi.org/10.1109/MODELS-C59198.2023.00032
http://dx.doi.org/10.1109/MODELS-C59198.2023.00032
http://dx.doi.org/10.1109/ARES.2011.11
http://dx.doi.org/10.1109/ARES.2011.11

11. Bibliography

[221] D. R. d. Santos, C. M. Westphall, and C. B. Westphall. “A dynamic risk-based access

control architecture for cloud computing”. In: 2014 IEEE Network Operations and
Management Symposium (NOMS). 2014 IEEE Network Operations and Management

Symposium (NOMS). 2014, pp. 1–9.

[222] SAP and D. Telekom. Corona-Warn-App. GitHub. 2023. url: https://github.com/

corona-warn-app (visited on 01/29/2023).

[223] M. A. Sasse and I. Flechais. Usable Security: Why Do We Need It? How Do We Get
It? O’Reilly, 2005.

[224] P. Schaar. “Privacy by design”. In: Identity in the Information Society 3.2 (2010).

Publisher: Springer, pp. 267–274.

[225] L. Schmid, S. Hahner, and T. Sağlam. “JPlag: Detecting Obfuscated Software

Plagiarism using Token Normalization Graphs”. In: Software Engineering 2025.

accepted, to appear. Gesellschaft für Informatik (GI), 2025.

[226] S. Schneider, N. E. D. Ferreyra, P.-J. Quéval, G. Simhandl, U. Zdun, and R. Scandari-

ato. “How Data�ow Diagrams Impact Software Security Analysis: an Empirical

Experiment”. In: 2024 IEEE International Conference on Software Analysis, Evolu-

tion and Reengineering (SANER). IEEE Computer Society, 1, 2024, pp. 952–963.

[227] S. Schneider, T. Özen, M. Chen, and R. Scandariato. “microSecEnD: A Dataset of

Security-Enriched Data�ow Diagrams for Microservice Applications”. In: 2023
IEEE/ACM 20th International Conference on Mining Software Repositories (MSR).
2023 IEEE/ACM 20th International Conference on Mining Software Repositories

(MSR). 2023, pp. 125–129.

[228] S. Schneider and R. Scandariato. “Automatic extraction of security-rich data�ow

diagrams for microservice applications written in Java”. In: Journal of Systems and
Software 202 (2023), p. 111722.

[229] S. Schulz, F. Reiche, S. Hahner, and J. Schi�. “Continuous Secure Software De-

velopment and Analysis”. In: Proceedings of Symposium on Software Performance
2021. Symposium on Software Performance. CEUR Workshop Proceedings, 2021,

pp. 1–6.

[230] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and P. Som-

merlad. Security Patterns: Integrating security and systems engineering. John Wiley

& Sons, 2013.

[231] F. Schwickerath, N. Boltz, S. Hahner, M. Walter, C. Gerking, and R. Heinrich. Tool-
Supported Architecture-Based Data Flow Analysis for Con�dentiality. 2023. arXiv:

2308.01645[cs].

[232] S. Seifermann. “Architectural Data Flow Analysis”. In: 2016 13th Working IEEE/I-
FIP Conference on Software Architecture (WICSA). 2016 13th Working IEEE/IFIP

Conference on Software Architecture (WICSA). IEEE, 2016, pp. 270–271.

[233] S. Seifermann. “Architectural Data Flow Analysis for Detecting Violations of Con-

�dentiality Requirements”. Dissertation. Karlsruhe Institute of Technology (KIT),

2022.

269

http://dx.doi.org/10.1109/NOMS.2014.6838319
http://dx.doi.org/10.1109/NOMS.2014.6838319
https://github.com/corona-warn-app
https://github.com/corona-warn-app
https://github.com/corona-warn-app
http://dx.doi.org/10.1109/SANER60148.2024.00103
http://dx.doi.org/10.1109/SANER60148.2024.00103
http://dx.doi.org/10.1109/MSR59073.2023.00030
http://dx.doi.org/10.1109/MSR59073.2023.00030
http://dx.doi.org/10.1016/j.jss.2023.111722
http://dx.doi.org/10.1016/j.jss.2023.111722
http://dx.doi.org/10.48550/arXiv.2308.01645
http://dx.doi.org/10.48550/arXiv.2308.01645
https://arxiv.org/abs/2308.01645 [cs]
http://dx.doi.org/10.1109/WICSA.2016.49
https://doi.org/10.5445/IR/1000148748
https://doi.org/10.5445/IR/1000148748

11. Bibliography

[234] S. Seifermann, R. Heinrich, and R. Reussner. “Data-Driven Software Architecture

for Analyzing Con�dentiality”. In: 2019 IEEE International Conference on Software
Architecture (ICSA). IEEE, 2019, pp. 1–10.

[235] S. Seifermann, R. Heinrich, D. Werle, and R. Reussner. “A Uni�ed Model to Detect

Information Flow and Access Control Violations in Software Architectures”. In:

Proceedings of the 18th International Conference on Security and Cryptography. 18th

International Conference on Security and Cryptography. SCITEPRESS - Science

and Technology Publications, 2021, pp. 26–37.

[236] S. Seifermann, R. Heinrich, D. Werle, and R. Reussner. “Detecting violations of

access control and information �ow policies in data �ow diagrams”. In: Journal of
Systems and Software 184 (1, 2022), p. 111138.

[237] S. Seifermann, M. Walter, S. Hahner, R. Heinrich, and R. Reussner. “Identifying

Con�dentiality Violations in Architectural Design Using Palladio”. In: Companion
Proceedings of the 15th European Conference on Software Architecture (ECSA-C). 15th

European Conference on Software Architecture (ECSA 2021). CEUR Workshop

Proceedings, 2021, pp. 1–4.

[238] M. Shaw. “What makes good research in software engineering?” In: International
Journal on Software Tools for Technology Transfer 4.1 (1, 2002), pp. 1–7.

[239] A. Shostack. Threat Modeling: Designing for Security. John Wiley & Sons, 12, 2014.

624 pp.

[240] F. Shull, V. Basili, B. Boehm, A. Brown, P. Costa, M. Lindvall, D. Port, I. Rus, R.

Tesoriero, and M. Zelkowitz. “What we have learned about �ghting defects”. In:

METRICS. 2002, pp. 249–258.

[241] L. Sion, K. Yskout, D. Van Landuyt, A. van den Berghe, and W. Joosen. “Secu-

rity Threat Modeling: Are Data Flow Diagrams Enough?” In: Proceedings of the
IEEE/ACM 42nd International Conference on Software Engineering Workshops. IC-

SEW’20. Association for Computing Machinery, 27, 2020, pp. 254–257.

[242] G. Snelting, D. Gi�horn, J. Graf, C. Hammer, M. Hecker, M. Mohr, and D. Wasserrab.

“Checking probabilistic noninterference using JOANA”. In: it - Information Tech-
nology 56.6 (2014), pp. 280–287.

[243] D. Sobhy, R. Bahsoon, L. Minku, and R. Kazman. “Evaluation of Software Architec-

tures under Uncertainty: A Systematic Literature Review”. In: ACM Transactions
on Software Engineering and Methodology (2021), p. 50.

[244] R. J. Sofaer, Y. David, M. Kang, J. Yu, Y. Cao, J. Yang, and J. Nieh. “RogueOne:

Detecting Rogue Updates via Di�erential Data-�ow Analysis Using Trust Domains”.

In: ICSE ’24. ICSE ’24. 2024.

[245] H. Stachowiak. Allgemeine Modelltheorie. Springer, 1973.

[246] T. Stahl, M. Voelter, and K. Czarnecki. Model-Driven Software Development: Tech-
nology, Engineering, Management. John Wiley & Sons, Inc., 2006.

[247] G. Starke. arc42 Quality Model. 2024.

270

http://dx.doi.org/10.1109/ICSA.2019.00009
http://dx.doi.org/10.1109/ICSA.2019.00009
http://dx.doi.org/10.5220/0010515300260037
http://dx.doi.org/10.5220/0010515300260037
http://dx.doi.org/10.1016/j.jss.2021.111138
http://dx.doi.org/10.1016/j.jss.2021.111138
http://dx.doi.org/10.1007/s10009-002-0083-4
http://dx.doi.org/10.1145/3387940.3392221
http://dx.doi.org/10.1145/3387940.3392221
http://dx.doi.org/10.1145/3597503.3639199
http://dx.doi.org/10.1145/3597503.3639199
https://quality.arc42.org/

11. Bibliography

[248] Statista. Number of internet users worldwide 2005-2023. Statista. 2004. url: https://

www.statista.com/statistics/273018/number-of-internet-users-worldwide/

(visited on 09/23/2024).

[249] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: Eclipse Modeling
Framework. Pearson Education, 2008.

[250] D. Stengel. “Verfeinerung von Zugri�skontrollrichtlinien unter Berücksichtigung

von Ungewissheit in der Entwurfszeit”. Master’s Thesis. Karlsruhe Institute of

Technology (KIT), 2021.

[251] L. Sterz, C. Werner, and O. Raabe. “Intelligente Verkehrssysteme – IT-Sicherheit

in o�enen Infrastrukturen”. In: Recht der Datenverarbeitung 6 (2022).

[252] M. Sulochana and O. Dubey. “Preserving Data Con�dentiality Using Multi-cloud

Architecture”. In: Procedia Computer Science. Big Data, Cloud and Computing

Challenges 50 (1, 2015), pp. 357–362.

[253] B. Taghavi and S. Weber. “A Survey of Analysis Composition Operators in the

Context of Palladio”. In: Softwaretechnik-Trends Band 43, Heft 4. Gesellschaft für

Informatik e.V., 2023.

[254] A. Tchernykh, U. Schwiegelsohn, E.-g. Talbi, and M. Babenko. “Towards under-

standing uncertainty in cloud computing with risks of con�dentiality, integrity,

and availability”. In: Journal of Computational Science 36 (1, 2019), p. 100581.

[255] J. Troya, N. Moreno, M. F. Bertoa, and A. Vallecillo. “Uncertainty representation

in software models: a survey”. In: Software and Systems Modeling 20.4 (1, 2021),

pp. 1183–1213.

[256] K. Tuma, R. Scandariato, and M. Balliu. “Flaws in Flows: Unveiling Design Flaws

via Information Flow Analysis”. In: 2019 IEEE International Conference on Software
Architecture (ICSA). 2019 IEEE International Conference on Software Architecture

(ICSA). IEEE, 2019, pp. 191–200.

[257] K. Tuma, L. Sion, R. Scandariato, and K. Yskout. “Automating the early detection of

security design �aws”. In: Proceedings of the 23rd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems. MODELS ’20. Association for

Computing Machinery, 2020, pp. 332–342.

[258] N. Ubayashi, Y. Kamei, and R. Sato. “When and Why Do Software Developers

Face Uncertainty?” In: 2019 IEEE 19th International Conference on Software Quality,
Reliability and Security (QRS). 2019 IEEE 19th International Conference on Software

Quality, Reliability and Security (QRS). 2019, pp. 288–299.

[259] UpStream. 2022 Global Automotive Cybersecurity Report. 2022.

[260] UpStream. 2024 Global Automotive Cybersecurity Report. 2024.

[261] K. Vanherpen, J. Denil, P. D. Meulenaere, and H. Vangheluwe. “Design-Space

Exploration in Model Driven Engineering”. In: Proceedings of the First International
Workshop on Combining Modelling with Search- and Example-Based Approaches
(CMSEBA 2014) (2014).

271

https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/
https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/
https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/
http://dx.doi.org/10.1016/j.procs.2015.04.035
http://dx.doi.org/10.1016/j.procs.2015.04.035
https://dl.gi.de/handle/20.500.12116/43245
https://dl.gi.de/handle/20.500.12116/43245
http://dx.doi.org/10.1016/j.jocs.2016.11.011
http://dx.doi.org/10.1016/j.jocs.2016.11.011
http://dx.doi.org/10.1016/j.jocs.2016.11.011
http://dx.doi.org/10.1007/s10270-020-00842-1
http://dx.doi.org/10.1007/s10270-020-00842-1
http://dx.doi.org/10.1109/ICSA.2019.00028
http://dx.doi.org/10.1109/ICSA.2019.00028
http://dx.doi.org/10.1145/3365438.3410954
http://dx.doi.org/10.1145/3365438.3410954
http://dx.doi.org/10.1109/QRS.2019.00045
http://dx.doi.org/10.1109/QRS.2019.00045
https://upstream.auto/2022report/
https://upstream.auto/reports/global-automotive-cybersecurity-report/

11. Bibliography

[262] P. Villalobos, A. Ho, J. Sevilla, T. Besiroglu, L. Heim, and M. Hobbhahn. “Will we run

out of data? Limits of LLM scaling based on human-generated data”. In: Proceedings
of the 41st International Conference on Machine Learning. International Conference

on Machine Learning. ISSN: 2640-3498. PMLR, 8, 2024, pp. 49523–49544.

[263] W. E. Walker, P. Harremoës, J. Rotmans, J. P. Van Der Sluijs, M. B. Van Asselt,

P. Janssen, and M. P. Krayer von Krauss. “De�ning uncertainty: a conceptual

basis for uncertainty management in model-based decision support”. In: Integrated
assessment 4.1 (2003). Publisher: Taylor & Francis, pp. 5–17.

[264] M. Walter. “Context-based Access Control and Attack Modelling and Analysis”.

Dissertation. 2023.

[265] M. Walter, S. Hahner, T. Bures, P. Hnetynka, R. Heinrich, and R. Reussner. “Architecture-

based attack propagation and variation analysis for identifying con�dentiality

issues in Industry 4.0”. In: at - Automatisierungstechnik 71.6 (2023), pp. 443–452.

[266] M. Walter, S. Hahner, S. Seifermann, T. Bures, P. Hnetynka, J. Pacovsky, and R.

Heinrich. “Architectural Optimization for Con�dentiality Under Structural Un-

certainty”. In: Software Architecture. Lecture Notes in Computer Science. Springer

International Publishing, 2022, pp. 309–332.

[267] M. Walter, R. Heinrich, and R. Reussner. “Architectural Attack Propagation Analysis

for Identifying Con�dentiality Issues”. In: 2022 IEEE 19th International Conference
on Software Architecture (ICSA). 19th International Conference on Software Archi-

tecture. Institute of Electrical and Electronics Engineers (IEEE), 2022, 12 S.

[268] M. Walter, R. Heinrich, and R. Reussner. “Architecture-Based Attack Path Analysis

for Identifying Potential Security Incidents”. In: Software Architecture. Lecture

Notes in Computer Science. Springer Nature Switzerland, 2023, pp. 37–53.

[269] M. Walter and R. Reussner. “Tool-Based Attack Graph Estimation and Scenario

Analysis for Software Architectures”. In: Software Architecture. ECSA 2022 Tracks
and Workshops. Springer International Publishing, 2023, pp. 45–61.

[270] B. P. Weimann. “Automated Cloud-to-Cloud Migration of Distributed So ware Sys-

tems for Privacy Compliance”. Master’s Thesis. Karlsruhe Institute of Technology

(KIT), 2017.

[271] H. Weisbaum. Trust in Facebook has dropped by 66 percent since the Cambridge
Analytica scandal. 2018. url: https://www.nbcnews.com/business/consumer/

trust- facebook- has- dropped- 51- percent- cambridge- analytica- scandal-

n867011 (visited on 01/19/2023).

[272] D. Weyns. An introduction to self-adaptive systems: A contemporary software engi-
neering perspective. John Wiley & Sons, 2020.

272

https://proceedings.mlr.press/v235/villalobos24a.html
https://proceedings.mlr.press/v235/villalobos24a.html
http://dx.doi.org/10.1515/auto-2022-0135
http://dx.doi.org/10.1515/auto-2022-0135
http://dx.doi.org/10.1515/auto-2022-0135
http://dx.doi.org/10.1007/978-3-031-15116-3_14
http://dx.doi.org/10.1007/978-3-031-15116-3_14
http://dx.doi.org/10.1109/ICSA53651.2022.00009
http://dx.doi.org/10.1109/ICSA53651.2022.00009
http://dx.doi.org/10.1007/978-3-031-42592-9_3
http://dx.doi.org/10.1007/978-3-031-42592-9_3
http://dx.doi.org/10.1007/978-3-031-36889-9_5
http://dx.doi.org/10.1007/978-3-031-36889-9_5
https://www.nbcnews.com/business/consumer/trust-facebook-has-dropped-51-percent-cambridge-analytica-scandal-n867011
https://www.nbcnews.com/business/consumer/trust-facebook-has-dropped-51-percent-cambridge-analytica-scandal-n867011
https://www.nbcnews.com/business/consumer/trust-facebook-has-dropped-51-percent-cambridge-analytica-scandal-n867011
https://www.nbcnews.com/business/consumer/trust-facebook-has-dropped-51-percent-cambridge-analytica-scandal-n867011
https://www.nbcnews.com/business/consumer/trust-facebook-has-dropped-51-percent-cambridge-analytica-scandal-n867011
https://doi.org/10.1002/9781119574910
https://doi.org/10.1002/9781119574910

11. Bibliography

[273] D. Weyns, R. Calinescu, R. Mirandola, K. Tei, M. Acosta, A. Bennaceur, N. Boltz,

T. Bures, J. Camara, A. Diaconescu, G. Engels, S. Gerasimou, I. Gerostathopoulos,

S. Getir Yaman, V. Grassi, S. Hahner, E. Letier, M. Litoiu, L. Marsso, A. Musil, J.

Musil, G. Nunes Rodrigues, D. Perez-Palacin, F. Quin, P. Scandurra, A. Vallecillo,

and A. Zisman. “Towards a Research Agenda for Understanding and Managing

Uncertainty in Self-Adaptive Systems”. In: ACM SIGSOFT Software Engineering
Notes 48.4 (2023), pp. 20–36.

[274] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J. Wuttke,

J. Andersson, H. Giese, and K. M. Göschka. “On Patterns for Decentralized Control

in Self-Adaptive Systems”. In: Software Engineering for Self-Adaptive Systems II:
International Seminar, Dagstuhl Castle, Germany, October 24-29, 2010 Revised Selected
and Invited Papers. Springer, 2013, pp. 76–107.

[275] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and J. Bruel. “RELAX: Incorporat-

ing Uncertainty into the Speci�cation of Self-Adaptive Systems”. In: 2009 17th IEEE
International Requirements Engineering Conference. 2009 17th IEEE International

Requirements Engineering Conference. 2009, pp. 79–88.

[276] C. Wohlin. “Case Study Research in Software Engineering—It is a Case, and it is

a Study, but is it a Case Study?” In: Information and Software Technology 133 (1,

2021), p. 106514.

[277] X. Yang and J. Alves-Foss. “Security Policy Re�nement: High-Level Speci�cation to

Low-Level Implementation”. In: 2013 International Conference on Social Computing.

2013 International Conference on Social Computing. 2013, pp. 502–511.

[278] M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren. “Understanding Uncer-

tainty in Cyber-Physical Systems: A Conceptual Model”. In: Modelling Foundations
and Applications. Lecture Notes in Computer Science. Springer International Pub-

lishing, 2016, pp. 247–264.

[279] H. Zhao, J. Lobo, A. Roy, and S. M. Bellovin. “Policy re�nement of network services

for MANETs”. In: 12th IFIP/IEEE International Symposium on Integrated Network
Management (IM 2011) and Workshops. 12th IFIP/IEEE International Symposium

on Integrated Network Management (IM 2011) and Workshops. 2011, pp. 113–120.

[280] O. Zimmermann, T. Gschwind, J. Küster, F. Leymann, and N. Schuster. “Reusable

architectural decision models for enterprise application development”. In: Software
Architectures, Components, and Applications: Third International Conference on
Quality of Software Architectures, QoSA 2007, Medford, MA, USA, July 11-23, 2007,
Revised Selected Papers 3. Springer, 2007, pp. 15–32.

273

http://dx.doi.org/10.1145/3617946.3617951
http://dx.doi.org/10.1145/3617946.3617951
https://doi.org/10.1007/978-3-642-35813-5_4
https://doi.org/10.1007/978-3-642-35813-5_4
http://dx.doi.org/10.1109/RE.2009.36
http://dx.doi.org/10.1109/RE.2009.36
http://dx.doi.org/10.1016/j.infsof.2021.106514
http://dx.doi.org/10.1016/j.infsof.2021.106514
http://dx.doi.org/10.1109/SocialCom.2013.77
http://dx.doi.org/10.1109/SocialCom.2013.77
http://dx.doi.org/10.1007/978-3-319-42061-5_16
http://dx.doi.org/10.1007/978-3-319-42061-5_16
http://dx.doi.org/10.1109/INM.2011.5990681
http://dx.doi.org/10.1109/INM.2011.5990681

Part V.

Appendix

A. Running Example in the Palladio
Component Model

Our running example is shown in Chapter 3. To illustrate the architectural model of the

running example using the Palladio Component Model (PCM), we show two diagrams. First,

Figure A.1 shows a graphical representation of the Palladio component repository model,
comprising the components and their interfaces. Second, Figure A.2 shows the Service

E�ect Speci�cation (SEFF) of purchaseItem, comprising the default purchasing behavior

and alternatives due to uncertainty, e.g., the processing of purchase data with erroneous

encryption, or lacking validation. The behavior is represented using assignments, e.g., by

assigning the Validated and Encrypted labels in the upper left, as de�ned by Seifermann

et al. [237].

Both diagrams are exported from the Palladio Bench [205], which represents the foundation

of our tool support. The diagrams can be created and altered using Eclipse’s inline

diagram editors. Furthermore, Figure A.3 shows an excerpt from our tool support to

create uncertainty models, following the meta model presented in Figure 7.11. Here, the

uncertainty scenarios of the Behavior uncertainty U2 reference the alternative actions

shown in Figure A.2. Using these models and previously speci�ed data �ow constraints

[36, 105] as an input, r Abunai can identify con�dentiality violations due to uncertainty,

see Subsection 7.5.2. The remaining PCM models and the required tooling to display them

can be found in the data set [98].

277

A. Running Example in the Palladio Component Model

<<CompositeDataType>>
UserDetails

<<CompositeDataType>>
InventoryListing

<<Interface>>
DatabaseInterface

void storeUserData(UserDetails userData)
InventoryListing queryInventory()

void updateInventory(InventoryListing
inventory)

<<Interface>>
UserInterface

void purchaseItem(UserDetails userData,
InventoryListing inventory)

InventoryListing inputSearchDetails()
void requestSupportContact()

<<BasicComponent>>
OnlineShop

SEFFCompartment

UserInterface.purchaseItem
UserInterface.inputSearchDetails

UserInterface.requestSupportContact

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
DatabaseService

SEFFCompartment

DatabaseInterface.queryInventory
DatabaseInterface.storeUserData

DatabaseInterface.updateInventory

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

Figure A.1.: Palladio repository model of the running example, exported from the Palladio-Bench [205].

278

A. Running Example in the Palladio Component Model

<<ExternalCallAction>>
Update inventory
OnlineShop.DatabaseInterface.
updateInventory

InputVariableUsageCompartment

inventory

inventory.*.* := inventory.*.*

OutputVariableUsageCompartment

<<ExternalCallAction>>
Store data
OnlineShop.DatabaseInterface.
storeUserData

InputVariableUsageCompartment

userData

userData.*.* := userData.*.*

OutputVariableUsageCompartment

<<SetVariableAction>>
Process purchase

userData

userData.DataEncryption.
Encrypted := true

userData

userData.DataValidation.
Validated := true

<<SetVariableAction>>
U2 Broken Encryption

userData

userData.DataValidation.
Validated := true

<<SetVariableAction>>
U2 Broken Validation

userData

userData.DataEncryption.
Encrypted := true

<<SetVariableAction>>
U2 Broken Validation & Encryption

userData

userData.*.* := userData.*.*

Figure A.2.: Exemplary Palladio Service E�ect Speci�cation (SEFF) of the running example, exported from

the Palladio-Bench [205].

Figure A.3.: Uncertainty model of the running example, showing four uncertainty sources and their scenarios.

Screenshot from the Palladio-Bench [205].

279

B. Impact Sets of the Running Example

Our uncertainty impact analysis has been introduced in Chapter 6. We show the resulting

impact sets after the architectural propagation and the propagation in the Data Flow

Diagram (DFD) of the running example, see Chapter 3. These are the results of the

automated uncertainty impact analysis r UIA. Listing B.1 shows the impact set of

Uncertainty U1, Listing B.2 shows the impact set of Uncertainty U2, Listing B.3 shows

the impact set of Uncertainty U3, and Listing B.4 shows the impact set of Uncertainty

U4. We removed the element IDs from the analysis output for the sake of brevity. The

comprehensive analysis output can be found in the data set [98].

281

B. Impact Sets of the Running Example

1 Result of the PCM propagation:

2 SEFFActionSequenceElement (Beginning view)

3 SEFFActionSequenceElement (Beginning buy)

4 SEFFActionSequenceElement (Beginning requestSupport)

5 SEFFActionSequenceElement (Beginning view)

6 CallingUserActionSequenceElement / calling (ViewEntryLevelSystemCall)

7 CallingUserActionSequenceElement / returning (ViewEntryLevelSystemCall)

8 CallingUserActionSequenceElement / calling (BuyEntryLevelSystemCall)

9 CallingUserActionSequenceElement / returning (BuyEntryLevelSystemCall)

10 CallingUserActionSequenceElement / calling (RequestSupportCall)

11 CallingUserActionSequenceElement / returning (RequestSupportCall)

12 CallingUserActionSequenceElement / calling (ViewShopCall)

13 CallingUserActionSequenceElement / returning (ViewShopCall)

14 Result of the DFD propagation:

15 CallingUserActionSequenceElement / calling (ViewShopCall)

16 SEFFActionSequenceElement (Beginning view)

17 CallingSEFFActionSequenceElement / calling (DatabaseLoadInventory)

18 SEFFActionSequenceElement (Beginning loadInventory)

19 SEFFActionSequenceElement (RETURN)

20 SEFFActionSequenceElement (Ending loadInventory)

21 CallingSEFFActionSequenceElement / returning (DatabaseLoadInventory)

22 SEFFActionSequenceElement (RETURN)

23 SEFFActionSequenceElement (Ending view)

24 CallingUserActionSequenceElement / returning (ViewShopCall)

25 UserActionSequenceElement (Stopping usage: View Shop)

26 CallingUserActionSequenceElement / calling (ViewEntryLevelSystemCall)

27 SEFFActionSequenceElement (Beginning view)

28 CallingSEFFActionSequenceElement / calling (DatabaseLoadInventory)

29 SEFFActionSequenceElement (Beginning loadInventory)

30 SEFFActionSequenceElement (RETURN)

31 SEFFActionSequenceElement (Ending loadInventory)

32 CallingSEFFActionSequenceElement / returning (DatabaseLoadInventory)

33 SEFFActionSequenceElement (RETURN)

34 SEFFActionSequenceElement (Ending view)

35 CallingUserActionSequenceElement / returning (ViewEntryLevelSystemCall)

36 CallingUserActionSequenceElement / calling (BuyEntryLevelSystemCall)

37 SEFFActionSequenceElement (Beginning buy)

38 SEFFActionSequenceElement (UserDataProcessing)

39 CallingSEFFActionSequenceElement / calling (DatabaseStoreInventory)

40 SEFFActionSequenceElement (Beginning updateInventory)

41 SEFFActionSequenceElement (Ending updateInventory)

42 CallingSEFFActionSequenceElement / returning (DatabaseStoreInventory)

43 CallingSEFFActionSequenceElement / calling (DatabaseStoreUserData)

44 SEFFActionSequenceElement (Beginning storeUserData)

45 SEFFActionSequenceElement (Ending storeUserData)

46 CallingSEFFActionSequenceElement / returning (DatabaseStoreUserData)

47 SEFFActionSequenceElement (Ending buy)

48 CallingUserActionSequenceElement / returning (BuyEntryLevelSystemCall)

49 UserActionSequenceElement (Stopping usage: Buy from Shop)

50 CallingUserActionSequenceElement / calling (RequestSupportCall)

51 SEFFActionSequenceElement (Beginning requestSupport)

52 SEFFActionSequenceElement (Ending requestSupport)

53 CallingUserActionSequenceElement / returning (RequestSupportCall)

54 UserActionSequenceElement (Stopping usage: Request Support)

Listing B.1: Result of the uncertainty impact analysis of Uncertainty U1 in the running example.

282

B. Impact Sets of the Running Example

1 Result of the PCM propagation:

2 SEFFActionSequenceElement (UserDataProcessing)

3

4 Result of the DFD propagation:

5 SEFFActionSequenceElement (UserDataProcessing)

6 CallingSEFFActionSequenceElement / calling (DatabaseStoreInventory)

7 SEFFActionSequenceElement (Beginning updateInventory)

8 SEFFActionSequenceElement (Ending updateInventory)

9 CallingSEFFActionSequenceElement / returning (DatabaseStoreInventory)

10 CallingSEFFActionSequenceElement / calling (DatabaseStoreUserData)

11 SEFFActionSequenceElement (Beginning storeUserData)

12 SEFFActionSequenceElement (Ending storeUserData)

13 CallingSEFFActionSequenceElement / returning (DatabaseStoreUserData)

14 SEFFActionSequenceElement (Ending buy)

15 CallingUserActionSequenceElement / returning (BuyEntryLevelSystemCall)

16 UserActionSequenceElement (Stopping usage: Buy from Shop)

Listing B.2: Result of the uncertainty impact analysis of Uncertainty U2 in the running example.

283

B. Impact Sets of the Running Example

1 Result of the PCM propagation:

2 SEFFActionSequenceElement (Beginning loadInventory)

3 SEFFActionSequenceElement (Beginning updateInventory)

4 SEFFActionSequenceElement (Beginning storeUserData)

5 SEFFActionSequenceElement (Beginning loadInventory)

6

7 Result of the DFD propagation:

8 SEFFActionSequenceElement (Beginning loadInventory)

9 SEFFActionSequenceElement (RETURN)

10 SEFFActionSequenceElement (Ending loadInventory)

11 CallingSEFFActionSequenceElement / returning (DatabaseLoadInventory)

12 SEFFActionSequenceElement (RETURN)

13 SEFFActionSequenceElement (Ending view)

14 CallingUserActionSequenceElement / returning (ViewShopCall)

15 UserActionSequenceElement (Stopping usage: View Shop)

16 SEFFActionSequenceElement (Beginning loadInventory)

17 SEFFActionSequenceElement (RETURN)

18 SEFFActionSequenceElement (Ending loadInventory)

19 CallingSEFFActionSequenceElement / returning (DatabaseLoadInventory)

20 SEFFActionSequenceElement (RETURN)

21 SEFFActionSequenceElement (Ending view)

22 CallingUserActionSequenceElement / returning (ViewEntryLevelSystemCall)

23 CallingUserActionSequenceElement / calling (BuyEntryLevelSystemCall)

24 SEFFActionSequenceElement (Beginning buy)

25 SEFFActionSequenceElement (UserDataProcessing)

26 CallingSEFFActionSequenceElement / calling (DatabaseStoreInventory)

27 SEFFActionSequenceElement (Beginning updateInventory)

28 SEFFActionSequenceElement (Ending updateInventory)

29 CallingSEFFActionSequenceElement / returning (DatabaseStoreInventory)

30 CallingSEFFActionSequenceElement / calling (DatabaseStoreUserData)

31 SEFFActionSequenceElement (Beginning storeUserData)

32 SEFFActionSequenceElement (Ending storeUserData)

33 CallingSEFFActionSequenceElement / returning (DatabaseStoreUserData)

34 SEFFActionSequenceElement (Ending buy)

35 CallingUserActionSequenceElement / returning (BuyEntryLevelSystemCall)

36 UserActionSequenceElement (Stopping usage: Buy from Shop)

Listing B.3: Result of the uncertainty impact analysis of Uncertainty U3 in the running example.

284

B. Impact Sets of the Running Example

1 Result of the PCM propagation:

2 SEFFActionSequenceElement (Beginning loadInventory)

3 SEFFActionSequenceElement (RETURN)

4 SEFFActionSequenceElement (Ending loadInventory)

5 SEFFActionSequenceElement (Beginning updateInventory)

6 SEFFActionSequenceElement (Ending updateInventory)

7 SEFFActionSequenceElement (Beginning storeUserData)

8 SEFFActionSequenceElement (Ending storeUserData)

9 SEFFActionSequenceElement (Beginning loadInventory)

10 SEFFActionSequenceElement (RETURN)

11 SEFFActionSequenceElement (Ending loadInventory)

12

13 Result of the DFD propagation:

14 SEFFActionSequenceElement (Beginning loadInventory)

15 SEFFActionSequenceElement (RETURN)

16 SEFFActionSequenceElement (Ending loadInventory)

17 CallingSEFFActionSequenceElement / returning (DatabaseLoadInventory)

18 SEFFActionSequenceElement (RETURN)

19 SEFFActionSequenceElement (Ending view)

20 CallingUserActionSequenceElement / returning (ViewEntryLevelSystemCall)

21 CallingUserActionSequenceElement / calling (BuyEntryLevelSystemCall)

22 SEFFActionSequenceElement (Beginning buy)

23 SEFFActionSequenceElement (UserDataProcessing)

24 CallingSEFFActionSequenceElement / calling (DatabaseStoreInventory)

25 SEFFActionSequenceElement (Beginning updateInventory)

26 SEFFActionSequenceElement (Ending updateInventory)

27 CallingSEFFActionSequenceElement / returning (DatabaseStoreInventory)

28 CallingSEFFActionSequenceElement / calling (DatabaseStoreUserData)

29 SEFFActionSequenceElement (Beginning storeUserData)

30 SEFFActionSequenceElement (Ending storeUserData)

31 CallingSEFFActionSequenceElement / returning (DatabaseStoreUserData)

32 SEFFActionSequenceElement (Ending buy)

33 CallingUserActionSequenceElement / returning (BuyEntryLevelSystemCall)

34 UserActionSequenceElement (Stopping usage: Buy from Shop)

35 SEFFActionSequenceElement (Beginning loadInventory)

36 SEFFActionSequenceElement (RETURN)

37 SEFFActionSequenceElement (Ending loadInventory)

38 CallingSEFFActionSequenceElement / returning (DatabaseLoadInventory)

39 SEFFActionSequenceElement (RETURN)

40 SEFFActionSequenceElement (Ending view)

41 CallingUserActionSequenceElement / returning (ViewShopCall)

42 UserActionSequenceElement (Stopping usage: View Shop)

Listing B.4: Result of the uncertainty impact analysis of Uncertainty U4 in the running example.

285

C. All Confidentiality Violations in the
Running Example

We give an overview of all con�dentiality violations identi�ed in the running example by

r Abunai. First, Listing C.1 shows all combinations of uncertainty scenarios that cause

the violation of at least one con�dentiality requirement. Second, Listing C.2 exempli�es

the result of the �rst scenario combination by showing all con�dentiality-violating vertices.

The full analysis results can be found in the data set [98].

1 [U1 Invalid, U2-Default, U3 Alternative]

2 [U1 Invalid, U2 Broken Encryption, U3 Alternative]

3 [U1 Invalid, U2 Broken Validation, U3 Alternative]

4 [U1 Invalid, U2 Broken Validation & Encryption, U3 Alternative]

5 [U1 Invalid, U2-Default, U3-Default, U4-Default]

6 [U1 Invalid, U2-Default, U3-Default, U4 Alternative]

7 [U1 Invalid, U2 Broken Encryption, U3-Default, U4-Default]

8 [U1 Invalid, U2 Broken Encryption, U3-Default, U4 Alternative]

9 [U1 Invalid, U2 Broken Validation, U3-Default, U4-Default]

10 [U1 Invalid, U2 Broken Validation, U3-Default, U4 Alternative]

11 [U1 Invalid, U2 Broken Validation & Encryption, U3-Default, U4-Default]

12 [U1 Invalid, U2 Broken Validation & Encryption, U3-Default, U4 Alternative]

13 [U1-Default, U2 Broken Encryption, U3-Default, U4-Default]

14 [U1-Default, U2 Broken Encryption, U3-Default, U4 Alternative]

15 [U1-Default, U2 Broken Validation & Encryption, U3-Default, U4-Default]

16 [U1-Default, U2 Broken Validation & Encryption, U3-Default, U4 Alternative]

17 [U1 Invalid, U2 Broken Encryption, U3-Default, U4-Default]

18 [U1 Invalid, U2 Broken Encryption, U3-Default, U4 Alternative]

19 [U1 Invalid, U2 Broken Validation & Encryption, U3-Default, U4-Default]

20 [U1 Invalid, U2 Broken Validation & Encryption, U3-Default, U4 Alternative]

21 [U1 Malicious, U2 Broken Encryption, U3-Default, U4-Default]

22 [U1 Malicious, U2 Broken Encryption, U3-Default, U4 Alternative]

23 [U1 Malicious, U2 Broken Validation & Encryption, U3-Default, U4-Default]

24 [U1 Malicious, U2 Broken Validation & Encryption, U3-Default, U4 Alternative]

Listing C.1: All uncertainty scenarios of the running example that cause con�dentiality violations.

287

C. All Con�dentiality Violations in the Running Example

1 [U1 Invalid, U2-Default, U3 Alternative] ->

2 {SEFFPCMVertex (Beginning purchaseItem,

3 _nGp9cITjEeywmO_IpTxeAg), SEFFPCMVertex (Process purchase, _oEBNYDIXEe-m4c0ChzWfPg),

4 CallingSEFFPCMVertex / calling (Update inventory, _yVL18ITkEeywmO_IpTxeAg),

5 CallingSEFFPCMVertex / returning (Update inventory, _yVL18ITkEeywmO_IpTxeAg),

6 CallingSEFFPCMVertex / calling (Store data, _11NAEITkEeywmO_IpTxeAg), SEFFPCMVertex

7 (Beginning storeUserData, _oGmXgYTjEeywmO_IpTxeAg), SEFFPCMVertex (Ending

8 storeUserData, _oGmXgoTjEeywmO_IpTxeAg), CallingSEFFPCMVertex / returning (Store

9 data, _11NAEITkEeywmO_IpTxeAg), SEFFPCMVertex (Ending purchaseItem,

10 _nGp9cYTjEeywmO_IpTxeAg), CallingUserPCMVertex / returning (U1 Purchase item

11 Invalid, _UQNBoC1WEe-lUc5YrocPyg), UserPCMVertex (Stopping usage: Buy from Shop,

12 _LPwS4iHdEd6lJo4DCALHMw)},

Listing C.2: Detailed result of the �rst con�dentiality violation of the running example.

288

D. Palladio Repository Model of the
Corona Warn App

In the following, we show the full Palladio component repository model of the Corona Warn
App evaluation scenario, see Section 8.5. Due to the large size of this diagram, we split it

into four parts, shown in Figure D.2, Figure D.3, Figure D.4, and Figure D.5. Figure D.1

gives an overview of the structure. The original full-sized diagram and all PCM model

�les can be found in the data set [98].

<<BasicComponent>>
CoronaWarnApp

SEFFCompartment

CoronaWarnAppUserInterface.collectUsageStatistics
CoronaWarnAppUserInterface.updateStatus

CoronaWarnAppUserInterface.updateStatistics
CoronaWarnAppUserInterface.enterJournalEntry

CoronaWarnAppUserInterface.enterTeleTANAndUploadDiagnosisKeys
CoronaWarnAppUserInterface.scanCertificateQRCode

CoronaWarnAppUserInterface.scanTestQRCode
CoronaWarnAppUserInterface.confirmDiagnosisKeysUpload

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
ExposureNotificationFramework

SEFFCompartment

ExposureNotificationAPI.calculateMatches
ExposureNotificationAPI.retrieveOwnKeys

ExposureNotificationBLE.broadcastRPIs

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
DataDonationServer

SEFFCompartment

PrivacyPreserveringAnalyticsInterface.shareAnalytics

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
ContentDeliveryNetwork

SEFFCompartment

CDNInterface.downloadDiagnosisKeys
CDNInterface.downloadConfiguration

CDNInterface.downloadStatistics

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
DigitalCovidCertificateServer

SEFFCompartment

DigitalCovidCertificateInterface.retrieveDigitalCertificate

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
CovPassIssuerServer

SEFFCompartment

IssuerServiceAPI.issue

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
VerificationServer

SEFFCompartment

VerificationServerUtils.generateTAN
VerificationServerUtils.validateTAN

VerificationServerUtils.generateTeleTAN
VerificationServerUtils.generateRegistrationToken

VerificationServerAppInterface.requestRegistrationTokenwithGUID
VerificationServerAppInterface.requestTestResult

VerificationServerAppInterface.requestRegistrationTokenwithTeleTAN
VerificationServerAppInterface.requestTAN
VerificationCWAServerInterface.verifyTAN

AnalyticsInterface.collectStatistics
VerificationPortalnterface.requestTeleTAN

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
PortalServer

SEFFCompartment

PortalServerUserInterface.requestTeleTAN
AnalyticsInterface.collectStatistics

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
TestResultServer

SEFFCompartment

TestResultServerInterface.retrieveResult
LISInterface.registerResult

TestDashboardInterface.fetchStatistics
AnalyticsInterface.collectStatistics

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
LaboratoryInformationSystem

SEFFCompartment

LISUserInterface.enterResult

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
LabDashboard

SEFFCompartment

LabDashboardUserInterface.showStatistics

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
CoronaWarnAppServer

SEFFCompartment

CDNInterface.downloadDiagnosisKeys
CDNInterface.downloadConfiguration

CDNInterface.downloadStatistics
CWAServerAppInterface.uploadDiagnosisKeys

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
EuropeanFederationGatewayService

SEFFCompartment

KeyExchangeInterface.downloadDiagnosisKeys
KeyExchangeInterface.uploadDiagnosisKeys

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
SwissKeyExchangeServer

SEFFCompartment

KeyExchangeInterface.uploadDiagnosisKeys
KeyExchangeInterface.downloadDiagnosisKeys

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
CoronaWarnAppAnalyticsServer

SEFFCompartment

AnalyticsRequestInterface.retrieveGeneralStatistics

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
EuropeanFederationGatewayServiceDB

SEFFCompartment

EFGServiceDBInterface.get
EFGServiceDBInterface.add

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
CoronaWarnAppServerDB

SEFFCompartment

CWAServerDBInterface.get
CWAServerDBInterface.add

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
TestResultServerDB

SEFFCompartment

TestResultDBInterface.get
TestResultDBInterface.add

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<Interface>>
ExposureNotificationAPI

SummaryOfContacts calculateMatches
(DiagnosisKeys diagnosisKeys,
AppConfiguration configurationParameters)

DiagnosisKeys retrieveOwnKeys()

<<Interface>>
ExposureNotificationBLE

void broadcastRPIs
(RollingProximityIdentifiers rpis)

<<Interface>>
PrivacyPreserveringAnalyticsInterface

void shareAnalytics(AnalyticData
analyticData, AuthenticityProof
authenticityProof)

<<Interface>>
DigitalCovidCertificateInterface

DigitalGreenCertificate
retrieveDigitalCertificate
(CertificateData certificateData)

<<Interface>>
IssuerServiceAPI

DigitalGreenCertificate issue
(CertificateData certificateData)

<<Interface>>
VerificationServerAppInterface

RegistrationToken requestRegistrationTokenwithGUID(GUID guid)
RegistrationToken requestRegistrationTokenwithTeleTAN(TeleTAN teleTAN)

TAN requestTAN(RegistrationToken registrationToken)
TestResult requestTestResult(RegistrationToken registrationToken)

<<Interface>>
CWAServerAppInterface

void uploadDiagnosisKeys(DiagnosisKeys diagnosisKeys, TAN tan)

<<Interface>>
CDNInterface

DiagnosisKeys downloadDiagnosisKeys()
GeneralStatistics downloadStatistics()

AppConfiguration downloadConfiguration()
<<Interface>>
KeyExchangeInterface

DiagnosisKeys downloadDiagnosisKeys()
void uploadDiagnosisKeys(DiagnosisKeys diagnosisKeys)

<<Interface>>
VerificationCWAServerInterface

bool verifyTAN(TAN tan)

<<Interface>>
VerificationPortalnterface

TeleTAN requestTeleTAN()

<<Interface>>
CWAServerDBInterface

DiagnosisKeys get()
void add(DiagnosisKeys diagnosisKeys)

<<Interface>>
EFGServiceDBInterface

DiagnosisKeys get()
void add(DiagnosisKeys diagnosisKeys)

<<Interface>>
TestResultServerInterface

TestResult retrieveResult(GUID guid)

<<Interface>>
LISInterface

void registerResult(TestResult
testResult, GUID guid)

<<Interface>>
TestDashboardInterface

DetailedStatistics fetchStatistics()

<<Interface>>
TestResultDBInterface

TestResult get()
void add(TestResult testResult)

<<Interface>>
AnalyticsInterface

DetailedStatistics collectStatistics()

<<CompositeDataType>>
DiagnosisKeys

<<CompositeDataType>>
RollingProximityIdentifiers

<<CompositeDataType>>
SummaryOfContacts

<<BasicComponent>>
SecureStorage

SEFFCompartment

SecureStorageInterface.get
SecureStorageInterface.add

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<Interface>>
SecureStorageInterface

void add(RollingProximityIdentifiers
rpis)

RollingProximityIdentifiers get()

<<CompositeDataType>>
DigitalGreenCertificate

<<CompositeDataType>>
CertificateData

<<Interface>>
CoronaWarnAppUserInterface

void collectUsageStatistics(AnalyticData analyticData)
void enterJournalEntry(JournalEntry journalEntry)

void scanCertificateQRCode(CertificateData certificateData)
TestResult scanTestQRCode(GUID guid)

void enterTeleTANAndUploadDiagnosisKeys(TeleTAN teleTAN)
SummaryOfContacts updateStatus()
GeneralStatistics updateStatistics()

void confirmDiagnosisKeysUpload(GUID guid)

<<Interface>>
PortalServerUserInterface

TeleTAN requestTeleTAN()

<<Interface>>
LabDashboardUserInterface

DetailedStatistics showStatistics()

<<Interface>>
LISUserInterface

void enterResult(TestResult
testResult, GUID guid)

<<CompositeDataType>>
AnalyticData

<<CompositeDataType>>
AuthenticityProof

<<Interface>>
AnalyticsRequestInterface

GeneralStatistics retrieveGeneralStatistics()

<<CompositeDataType>>
JournalEntry

<<CompositeDataType>>
GUID

<<CompositeDataType>>
TeleTAN

<<CompositeDataType>>
TAN

<<CompositeDataType>>
AppConfiguration

<<CompositeDataType>>
GeneralStatistics

<<Interface>>
VerificationServerUtils

TAN generateTAN()
TeleTAN generateTeleTAN()
bool validateTAN(TAN tan)

RegistrationToken generateRegistrationToken()

<<CompositeDataType>>
RegistrationToken

<<CompositeDataType>>
TestResult

<<CompositeDataType>>
DetailedStatistics

User Interface

User Interface

User Interface

User Interface

Figure D.1.: Palladio component repository model of the Corona Warn App evaluation scenario (overview),

exported from the Palladio-Bench [205].

289

D. Palladio Repository Model of the Corona Warn App

<<BasicComponent>>
PortalServer

SEFFCompartment

PortalServerUserInterface.requestTeleTAN
AnalyticsInterface.collectStatistics

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
TestResultServer

SEFFCompartment

TestResultServerInterface.retrieveResult
LISInterface.registerResult

TestDashboardInterface.fetchStatistics
AnalyticsInterface.collectStatistics

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
LaboratoryInformationSystem

SEFFCompartment

LISUserInterface.enterResult

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
LabDashboard

SEFFCompartment

LabDashboardUserInterface.showStatistics

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
CoronaWarnAppAnalyticsServer

SEFFCompartment

AnalyticsRequestInterface.retrieveGeneralStatistics

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
TestResultServerDB

SEFFCompartment

TestResultDBInterface.get
TestResultDBInterface.add

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<Interface>>
TestResultServerInterface

TestResult retrieveResult(GUID guid)

<<Interface>>
LISInterface

void registerResult(TestResult
testResult, GUID guid)

<<Interface>>
TestDashboardInterface

DetailedStatistics fetchStatistics()

<<Interface>>
TestResultDBInterface

TestResult get()
void add(TestResult testResult)

<<Interface>>
AnalyticsInterface

DetailedStatistics collectStatistics()

<<Interface>>
LabDashboardUserInterface

DetailedStatistics showStatistics()

<<Interface>>
LISUserInterface

void enterResult(TestResult
testResult, GUID guid)

User Interface

User Interface

Figure D.2.: Palladio component repository model of the Corona Warn App evaluation scenario (part 1 of 4),

exported from the Palladio-Bench [205].

290

D. Palladio Repository Model of the Corona Warn App

<<BasicComponent>>
VerificationServer

SEFFCompartment

VerificationServerUtils.generateTAN
VerificationServerUtils.validateTAN

VerificationServerUtils.generateTeleTAN
VerificationServerUtils.generateRegistrationToken

VerificationServerAppInterface.requestRegistrationTokenwithGUID
VerificationServerAppInterface.requestTestResult

VerificationServerAppInterface.requestRegistrationTokenwithTeleTAN
VerificationServerAppInterface.requestTAN
VerificationCWAServerInterface.verifyTAN

AnalyticsInterface.collectStatistics
VerificationPortalnterface.requestTeleTAN

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
CoronaWarnAppServer

SEFFCompartment

CDNInterface.downloadDiagnosisKeys
CDNInterface.downloadConfiguration

CDNInterface.downloadStatistics
CWAServerAppInterface.uploadDiagnosisKeys

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
EuropeanFederationGatewayService

SEFFCompartment

KeyExchangeInterface.downloadDiagnosisK
KeyExchangeInterface.uploadDiagnosisKe

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
SwissKeyExchangeServer

SEFFCompartment

KeyExchangeInterface.uploadDiagnosisKeys
KeyExchangeInterface.downloadDiagnosisKeys

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
CoronaWarnAppServerDB

SEFFCompartment

CWAServerDBInterface.get
CWAServerDBInterface.add

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<Interface>>
KeyExchangeInterface

DiagnosisKeys downloadDiagnosisKeys()
void uploadDiagnosisKeys(DiagnosisKeys diagnosisKeys)

<<Interface>>
VerificationCWAServerInterface

bool verifyTAN(TAN tan)

<<Interface>>
VerificationPortalnterface

TeleTAN requestTeleTAN()

<<Interface>>
CWAServerDBInterface

DiagnosisKeys get()
void add(DiagnosisKeys diagnosisKeys)

<<Interface>>
PortalServerUserInterface

TeleTAN requestTeleTAN()

<<Interface>>
AnalyticsRequestInterface

GeneralStatistics retrieveGeneralStatistics()

<<Interface>>
VerificationServerU

TAN generateTAN()
TeleTAN generateTeleTA
bool validateTAN(TAN t

RegistrationToken generateRegistrat

User Interface

Figure D.3.: Palladio component repository model of the Corona Warn App evaluation scenario (part 2 of 4),

exported from the Palladio-Bench [205].

291

D. Palladio Repository Model of the Corona Warn App

<<Ba
Coron

SEFFC

CoronaWarnAppUserIn
CoronaWarnAppU

CoronaWarnAppUse
CoronaWarnAppUse

CoronaWarnAppUserInterface.en
CoronaWarnAppUserInt

CoronaWarnAppUse
CoronaWarnAppUserInterfa

PassiveResou

ComponentPar

Resource

<<BasicComponent>>
DataDonationServer

SEFFCompartment

PrivacyPreserveringAnalyticsInterface.shareAnalytics

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
ContentDeliveryNetwork

SEFFCompartment

CDNInterface.downloadDiagnosisKeys
CDNInterface.downloadConfiguration

CDNInterface.downloadStatistics

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

Keys
eys

<<BasicComponent>>
EuropeanFederationGatewayServiceDB

SEFFCompartment

EFGServiceDBInterface.get
EFGServiceDBInterface.add

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<Interface>>
PrivacyPreserveringAnalyticsInterface

void shareAnalytics(AnalyticData
analyticData, AuthenticityProof
authenticityProof)

<<Interface>>
VerificationServerAppInterface

RegistrationToken requestRegistrationTokenwithGUID(GUID guid)
RegistrationToken requestRegistrationTokenwithTeleTAN(TeleTAN teleTAN)

TAN requestTAN(RegistrationToken registrationToken)
TestResult requestTestResult(RegistrationToken registrationToken)

<<Interface>>
CWAServerAppInterface

void uploadDiagnosisKeys(DiagnosisKeys diagnosisKeys, TAN tan)

<<Interface>>
CDNInterface

DiagnosisKeys downloadDiagnosisKeys()
GeneralStatistics downloadStatistics()

AppConfiguration downloadConfiguration()
<<Interface>>
EFGServiceDBInterface

DiagnosisKeys get()
void add(DiagnosisKeys diagnosisKeys)

void collec
void ente

void scanCerti
Tes

void enterTeleTA
S

void co

<<CompositeDataType>>
AnalyticData

<<CompositeDataType>>
AuthenticityProof

<<CompositeDataType>>
JournalEntry

<<CompositeDataType>>
GUID

<<CompositeDataType>>
TeleTAN

<<CompositeDataType>>
TAN

Utils

)
AN()
tan)
tionToken()

<<CompositeDataType>>
RegistrationToken

User Interface

Figure D.4.: Palladio component repository model of the Corona Warn App evaluation scenario (part 3 of 4),

exported from the Palladio-Bench [205].

292

D. Palladio Repository Model of the Corona Warn App

sicComponent>>
naWarnApp

Compartment

nterface.collectUsageStatistics
UserInterface.updateStatus
erInterface.updateStatistics
rInterface.enterJournalEntry
terTeleTANAndUploadDiagnosisKeys
terface.scanCertificateQRCode
erInterface.scanTestQRCode
ace.confirmDiagnosisKeysUpload

urcesCompartment

ameterCompartment

eRequiredRoles

<<BasicComponent>>
ExposureNotificationFramework

SEFFCompartment

ExposureNotificationAPI.calculateMatches
ExposureNotificationAPI.retrieveOwnKeys

ExposureNotificationBLE.broadcastRPIs

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
DigitalCovidCertificateServer

SEFFCompartment

DigitalCovidCertificateInterface.retrieveDigitalCertificate

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
CovPassIssuerServer

SEFFCompartment

IssuerServiceAPI.issue

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<Interface>>
ExposureNotificationAPI

SummaryOfContacts calculateMatches
(DiagnosisKeys diagnosisKeys,
AppConfiguration configurationParameters)

DiagnosisKeys retrieveOwnKeys()

<<Interface>>
ExposureNotificationBLE

void broadcastRPIs
(RollingProximityIdentifiers rpis)

<<Interface>>
DigitalCovidCertificateInterface

DigitalGreenCertificate
retrieveDigitalCertificate
(CertificateData certificateData)

<<Interface>>
IssuerServiceAPI

DigitalGreenCertificate issue
(CertificateData certificateData)

<<CompositeDataType>>
DiagnosisKeys

<<CompositeDataType>>
RollingProximityIdentifiers

<<CompositeDataType>>
SummaryOfContacts

<<BasicComponent>>
SecureStorage

SEFFCompartment

SecureStorageInterface.get
SecureStorageInterface.add

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<Interface>>
SecureStorageInterface

void add(RollingProximityIdentifiers
rpis)

RollingProximityIdentifiers get()

<<CompositeDataType>>
DigitalGreenCertificate

<<CompositeDataType>>
CertificateData

<<Interface>>
CoronaWarnAppUserInterface

ctUsageStatistics(AnalyticData analyticData)
erJournalEntry(JournalEntry journalEntry)
ificateQRCode(CertificateData certificateData)
stResult scanTestQRCode(GUID guid)

TANAndUploadDiagnosisKeys(TeleTAN teleTAN)
SummaryOfContacts updateStatus()
GeneralStatistics updateStatistics()
onfirmDiagnosisKeysUpload(GUID guid)

<<CompositeDataType>>
AppConfiguration

<<CompositeDataType>>
GeneralStatistics

<<CompositeDataType>>
TestResult

<<CompositeDataType>>
DetailedStatistics

Figure D.5.: Palladio component repository model of the Corona Warn App evaluation scenario (part 4 of 4),

exported from the Palladio-Bench [205].

293

E. Towards a Graphical Notation for
Uncertainty in Data Flow Diagrams

As addressed previously in this dissertation, there is an ongoing discussion on standardizing

the representation of uncertainty in software models. Troya et al. [255] conducted a

Systematic Literature Review (SLR) on the wide variety of existing proposals on the

representation of uncertainty and �nd that it is a “good time for the modeling community

to try to organize their e�orts” [255]. This includes a consensus on the types of uncertainty,

but also appropriate notations. In this dissertation, we presented �ve types of uncertainty

sources that are relevant regarding con�dentiality and we argued why there should not be

less or more than these �ve types, see Chapter 5. Furthermore, we proposed notations

for uncertainty in Data Flow Diagrams (DFDs) and Directed Acyclic Graphs (DAGs), see

Section 5.5 and Subsection 7.5.2. However, we did intentionally not de�ne a precise

graphical notation, as such an endeavor requires a larger consensus like the ongoing

e�ort to de�ne the Precise Semantics for Uncertainty Modeling (PSUM) standard [184].

Nevertheless, we want to propose an initial graphical notation for uncertainty in DFDs

that might help the ongoing discussion.

Figure E.1 shows our proposal. Regarding the abstract syntax, we use the elements of

our meta model for Nondeterministic Data Flow Diagrams (NDFDs), see Figure 7.12. The

graphical representation of DFDs follows the concrete syntax of the uni�ed modeling

A

B

U3: Component Uncertainty?

?
A

B

U1: Connector/Interface
Uncertainty A

?

U2: Behavior Uncertainty

C

Label A Label B?
U4: External Uncertainty

Figure E.1.: Initial proposal for graphically representing uncertainty in Data Flow Diagrams (DFDs).

295

E. Towards a Graphical Notation for Uncertainty in Data Flow Diagrams

primitives by Seifermann et al. [235]. As speci�ed by DeMarco [64], nodes are denoted by

circles or lines, depending on their type, and �ows are denoted by arrows. In our example,

A and B represent processes and C represents a �le. Pins are denoted by rectangles that

decouple �ows and nodes, and the behavior speci�ed by assignments is annotated to the

nodes. In our example, we show two di�erent behaviors, denoted with di�erent arrow

types, e.g., the two-headed arrow�. Last, node labels are also annotated, e.g., Label A,

and Label B. For an introduction, see Section 2.5.

Our NDFD meta model shows the relation of the �ve uncertainty types to the DFD

element types. Connector and Interface uncertainty are secondary uncertainty types, that

a�ect the �ow between nodes, see Section 5.5. We denote this using the question mark

syntax introduced in Chapter 3, by annotating the question mark to the alternative �ow.

In Figure E.1, this is shown as an alternative �ow to either node A or node B due to

Uncertainty U1. Behavior uncertainty is primary uncertainty, directly a�ecting a node. We

denote this using the question mark and by showing alternative arrows that represent the

behavior. For instance, the behavior of node A could be the forwarding or the encryption

of data due to Uncertainty U2. Component uncertainty a�ects a complete node and thus

subsumes Behavior and External uncertainty. We denote this again using the question

mark syntax and show the alternative nodes, e.g., node A and node B due to Uncertainty

U3. A bene�t of this graphical notation is that it shows that both nodes require the same

interface, i.e., the same pins. Last, External uncertainty a�ects node labels. We denote this

using the question mark and by enumerating alternative labels, see Uncertainty U4.

Although this graphical notation has many bene�ts, e.g., directly representing the di�erent

scenarios, it is not perfect yet. For instance, we cannot represent the di�erence between

Connector and Interface uncertainty. Additionally, we cannot represent the impact of

Connector uncertainty on the assignments of the outgoing node. Last, to avoid ambiguity,

we always have to specify the variation due to the uncertainty, e.g., the di�erent labels, or

di�erent behaviors. Otherwise, the graphical syntax would, e.g., not di�erentiate between

Behavior and External uncertainty. Due to these shortcomings, we felt not con�dent

to claim this graphical syntax as part of our contributions. Instead, we focused on the

representation of uncertainty in DAGs that is more straightforward by only di�erentiating

between primary and secondary uncertainty. However, in the light of the recent standard-

ization e�orts [184] and to address the need for discussing uncertainty in DFDs based on

drawing diagrams, we conclude this dissertation with this short proposal
1
.

1 Acknowledgement: Not a single sentence of this dissertation was generated by ChatGPT, Gemini,

LLaMA, or a comparable tool. We only used the language-related tools DeepL (https://www.deepl.com/)

and Grammarly (https://grammarly.com/) to correct spelling and grammatical mistakes.

296

https://www.deepl.com/
https://grammarly.com/

	Abstract
	Zusammenfassung
	Danksagung
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	List of Acronyms
	Prolog
	Introduction
	Motivation
	Problem Statement
	Research Objective
	Approach
	Outline and Reading Paths
	Summary and Outlook
	In Simpler Words

	Foundations
	Uncertainty
	Confidentiality
	Model-Driven Software Development
	Software Architecture
	Data Flow Diagrams
	Elements of Data Flow Diagrams
	Unified Modeling Primitives
	Directed Acyclic Graphs

	Summary and Outlook
	In Simpler Words

	Running Example
	Online Shop Software Architecture
	Exemplary Uncertainty Sources
	Summary and Outlook
	In Simpler Words

	Contributions
	Overview
	Procedure for Uncertainty-Aware Analyses
	Overview of the Contributions
	Tool Support
	Illustration using the Running Example
	Summary and Outlook
	In Simpler Words

	Identification and Classification of Uncertainty Regarding Confidentiality
	Problem Statement
	The Relation of Uncertainty, Confidentiality, and Software Architecture
	Defining Software-Architectural Uncertainty
	Existing Notions of Uncertainty
	Investigating Existing Uncertainty Classifications

	Classification of Uncertainty Regarding Confidentiality
	Classification Category: Location
	Classification Category: Architectural Element Type
	Classification Category: Type
	Classification Category: Manageability
	Classification Category: Resolution Time
	Classification Category: Reducible by ADD
	Classification Category: Impact on Confidentiality
	Classification Category: Severity of the Impact
	Building on the Uncertainty Classification

	Applying the Classification to the Running Example
	Representing Uncertainty in Data Flow Diagrams
	Mapping Uncertainty to Data Flow Diagrams
	Mapping Uncertainty to Directed Acyclic Graphs

	Uncertainty Catalogs to Support the Identification
	A Collaborative Approach for Uncertainty Catalogs
	Assumptions and Limitations
	Summary and Outlook
	In Simpler Words

	Uncertainty Propagation to Enable Uncertainty Impact Analysis
	Problem Statement
	Representing Uncertainty in Architectural Models
	Modeling Uncertainty Sources and Uncertainty Impacts
	A Meta Model of the Uncertainty Impact in Data Flow Diagrams
	Annotating Uncertainty Sources in the Palladio Component Model

	Uncertainty Impact Analysis for Architectural Models
	Adapting Change Impact Analysis to Uncertainty Propagation
	Uncertainty Propagation of Component Uncertainty
	Uncertainty Propagation of Interface Uncertainty
	Uncertainty Propagation of Connector Uncertainty
	Uncertainty Propagation of External Uncertainty
	Uncertainty Propagation of Behavior Uncertainty
	Applying Architectural Uncertainty Impact Analysis

	Uncertainty Impact Analysis for Data Flow Diagrams
	Formal Foundation for Uncertainty Impact Analysis
	Algorithm for Uncertainty Impact Analysis in Data Flow Diagrams

	Uncertainty Impact Analysis regarding Confidentiality
	Coupling the Uncertainty Impact Analysis Approaches
	Algorithm for the Coupled Uncertainty Impact Analysis
	Applying Uncertainty Impact Analysis Regarding Confidentiality
	Tool Support for Uncertainty Impact Analysis

	Addressing the Uncertainty Awareness Problem
	Uncertainty Propagation in Uncertainty Flow Diagrams
	Assumptions and Limitations
	Summary and Outlook
	In Simpler Words

	Uncertainty-Aware Data Flow Analysis to Identify Confidentiality Violations
	Problem Statement
	A Framework for Architectural Data Flow Analysis
	Representing Data Flows in Data Flow Analysis
	Label Propagation to Enable Scalable Confidentiality Analysis

	Representing Uncertainty in Data Flow Analysis
	Available Information in Uncertainty-Aware Data Flow Analysis
	Levels of Uncertainty-Awareness in Data Flow Analysis
	Examples for Uncertainty-Aware Data Flow Analysis

	Uncertainty Type-Specific Data Flow Analysis
	Data Flow Analysis Under Structural Uncertainty
	Data Flow Analysis Under Environmental Uncertainty

	Uncertainty Type-Agnostic Data Flow Analysis
	Tracing Uncertainty in Data Flow Analysis
	Impact-Aware Data Flow Analysis Under Uncertainty

	Complexity of Data Flow Analysis Under Uncertainty
	Assumptions and Limitations
	Summary and Outlook
	In Simpler Words

	Validation
	Evaluation Scenarios
	Overview
	TravelPlanner
	DistanceTracker
	OnlineShop
	CoronaWarnApp
	MobilityAsAService
	JPlag
	Summary and Outlook
	In Simpler Words

	Evaluation
	Overview
	Evaluation Plan for the First Contribution
	Evaluation Plan for the Second Contribution
	Evaluation Plan for the Third Contribution

	Evaluation of the Classification and Identification of Uncertainty
	Evaluation Design
	Results and Discussion of the Structure's Suitability
	Results and Discussion of the Applicability
	Results and Discussion of the Purpose
	Results and Discussion of the Usability
	Threats to Validity

	Evaluation of the Uncertainty Impact Analysis
	Evaluation Design
	Results and Discussion of the Accuracy
	Results and Discussion of the Effort Reduction
	Threats to Validity

	Evaluation of the Uncertainty-Aware Data Flow Analysis
	Evaluation Design
	Results and Discussion of the Scalability
	Results and Discussion of the Accuracy
	Threats to Validity

	Summary and Outlook
	In Simpler Words

	Epilog
	Related Work
	Uncertainty and Software Architecture
	Surveys and Research Roadmaps
	Uncertainty Taxonomies and Classifications
	Architecting Self-Adaptive Systems
	Architecture Evaluation Under Uncertainty
	Architecture-Based Analysis
	Architectural Design Decisions and Uncertainty
	Uncertainty Management and Knowledge Sharing
	Summary

	Software Architecture and Confidentiality
	Model-based Security Analysis
	Data Flow Analysis
	Modeling Confidentiality Requirements
	Summary

	Confidentiality and Uncertainty
	Uncertainty-Aware Confidentiality Analysis
	Access Control Under Uncertainty
	Summary

	Summary and Outlook
	In Simpler Words

	Conclusion
	Summary
	Benefits
	Future Work
	In Simpler Words

	Bibliography

	Appendix
	Running Example in the Palladio Component Model
	Impact Sets of the Running Example
	All Confidentiality Violations in the Running Example
	Palladio Repository Model of the Corona Warn App
	Towards a Graphical Notation for Uncertainty in Data Flow Diagrams

