
An Architecture-Based Approach to Mitigate
Confidentiality Violations Using Machine Learning

Nils Niehues
Karlsruhe Institute of Technology

Karlsruhe, Germany
nils.niehues@kit.edu

Sebastian Hahner
Karlsruhe Institute of Technology

Karlsruhe, Germany
sebastian.hahner@kit.edu

Robert Heinrich
Karlsruhe Institute of Technology

Karlsruhe, Germany
robert.heinrich@kit.edu

Abstract—Today’s software systems have become increasingly
connected and complex, requiring comprehensive analysis to
ensure quality properties like confidentiality. Architecture-based
confidentiality analysis enables the early identification of confi-
dentiality violations to counter data breaches effectively. However,
uncertainty within the software system and its environment
hinders the precise and comprehensive analysis of software
architectures. Furthermore, the complexity of both architectural
models and uncertainties and their outcomes impede automated
model repair due to combinatorial explosion. Ultimately, software
architects must manually address all confidentiality violations,
which is both bothersome and error-prone. Although existing ap-
proaches can identify confidentiality violations due to uncertainty,
they fall short of mitigating their effects. In this paper, we address
this by utilizing machine learning in the confidentiality analysis
both to evaluate the criticality of identified violations and to
automatically repair them. This bridges the gap between analysis
and mitigation, thereby effectively supporting software architects.
Evaluation results show that logistic regression provides the best
ranking of the importance of uncertainty sources. Combined with
incremental testing, our approach outperforms the state of the
art and achieves up to a 60-fold reduction in runtime.

Index Terms—software architecture, confidentiality, uncer-
tainty, machine learning, data flow analysis

I. INTRODUCTION

In today’s world, software systems are increasingly intercon-
nected and complex, requiring thorough and early analysis
to ensure essential quality attributes, such as confidentiality.
Confidentiality ensures that data is “only accessible and inter-
pretable by authorized users in a specific context of use” [34].
Unpredictable factors, such as changes in user behavior and
system environment, continuously evolve software systems
[43]. Such uncertainty make it difficult for developers to
maintain confidentiality throughout a system’s lifecycle. Fur-
thermore, addressing issues later in the development process
increases costs [9, 25], making it important to address these
uncertainties at the design stage.

Architecture-based confidentiality analysis is a proactive
approach, allowing software architects to identify potential
confidentiality violations before they manifest in the deployed
system. Data flow and architectural diagrams help software
architects detect uncertainty sources that may impact confi-
dentiality early [55], as many uncertainty sources can already
be addressed at design time [29]. For instance, uncertainties
related to the deployment location of servers or whether en-
cryption is performed can influence data flow and compliance

with confidentiality requirements. Although these approaches
help identify uncertainty sources, software architects face
challenges in assessing their impact on confidentiality require-
ments due to the many forms of uncertainty and the complexity
of modern software systems [26]. The Architecture-Based
and Uncertainty-Aware Confidentiality Analysis (ABUNAI)
approach [27] can reveal confidentiality violations within the
system’s design due to uncertainty. For example, if the location
of a server processing personal data is uncertain, this can lead
to potential violations of regulations, such as the GDPR [20].

While existing analyses can pinpoint confidentiality viola-
tions, they fall short of providing solutions to mitigate them
[50, 57]. Software architects must manually address each iden-
tified confidentiality violation, a task that is labor-intensive and
prone to human error, particularly in large-scale systems [71].
Furthermore, the exponential growth of possible combinations
of uncertainty scenarios poses a significant challenge for
automated solutions, as trying out all possible configurations
quickly becomes computationally prohibitive, an issue known
from the field of design space exploration [39, 40].

This paper introduces a machine-learning approach to mit-
igate confidentiality violations, addressing these limitations
with two major contributions:

C1 A ranking algorithm for the relevance of uncertainties on
confidentiality violations examining 18 combinations of
machine learning techniques and aggregation strategies.

C2 An automatic mitigation approach that utilizes the rank-
ing algorithm to efficiently provide model variations
without confidentiality violation.

By ranking uncertainties based on their potential to cause
confidentiality breaches and subsequently testing combinations
of uncertainty scenarios, our approach identifies and resolves
confidentiality risks in an efficient manner. This supports soft-
ware architects in maintaining confidentiality requirements.
Our experiments on multiple evaluation scenarios show that
a combination of logistic regression with exponential decay
provides the most accurate ranking of uncertainties. Combined
with incremental testing, notably reduces mitigation runtime
compared to the start of the art [27]. In our evaluation, this
improvement cuts the time from 2 hours down to just 2
minutes—a reduction of up to 60 times. Even on average,
our approach still outperforms the state of the art.

N. Niehues, S. Hahner, and R. Heinrich, “An Architecture-Based Approach to Mitigate Confidentiality Violations Using Machine Learning”, 
in 2025 IEEE 22nd International Conference on Software Architecture (ICSA), IEEE, 2025, accepted, to appear.



The paper is structured as follows. Section II describes the
foundations for this work and Section III introduces a running
example. In Section IV, we provide an overview of the
approach, setting the stage for the uncertainty ranking in
Section V and the mitigation of violations in Section VI.
We evaluate our work in Section VII, present related work
in Section VIII, and conclude the paper in Section IX.

II. FOUNDATIONS

This section outlines the foundations essential for understand-
ing the contributions of this work. It covers the syntax of Data
Flow Diagrams (DFDs), its application in confidentiality anal-
ysis, the role of uncertainty in software architecture, and the
machine learning techniques employed to address constraint
violations in uncertain systems.

A. DFDs and confidentiality analysis

DeMarco [18] introduced DFDs to visually represent how data
moves through a system, including its processing steps. A net-
work of nodes and flows represents the data movement through
a system, where nodes correspond to entities like processes,
data stores, or external entities. System analysts widely use
DFDs because they clearly and simply describe how a system
processes data using a network of data transformers [42, 55].

The classic DFD model lacks the expressiveness required
for advanced applications like detecting data flow constraint
violations or addressing non-functional attributes such as
access control and hardware constraints. To address this,
Seifermann et al. [57] introduced an improved DFD meta-
model with structures for security properties and resource
allocations, enabling automatic constraint checks and greater
system complexity representation.

To address rule explosion and performance bottlenecks
with large systems, Boltz et al. [12] developed an improved
DFD-based model. Their method leverages Transposed Flow
Graphs (TFGs), which are acyclic graphs that trace the flow
of data through the system from many sources to one sink
enabling efficient constraint checking. This model includes the
following key elements:

Nodes are categorized into external nodes (data
sources/sinks), process nodes (which modify and forward
data), and store nodes (which store and emit data). Flows
represent data transfer between nodes. Labels are used
to annotate node data characteristics (e.g. Encrypted or
Personal), which propagate through the DFD and are critical
for assessing confidentiality. Behaviors define how data is
processed at each node, with assignments and pins that
specify input/output operations. Assignments forward data or
modify properties by adding or removing labels.

By augmenting traditional DFDs with these features, the
Data Flow Analysis (DFA) can check complex requirements
such as access control, geographical data restrictions, and
hardware-related constraints and detect violations [12]. As
such an analysis either finds confidentiality violations or does
not, we consider confidentiality a strictly binary attribute.

B. Uncertainty in software architecture

Uncertainty is defined as “the state, even partial, of deficiency
of information related to, understanding or knowledge of,
an event, its consequence, or likelihood” [34]. Uncertainty
in software systems arises from incomplete or ambiguous
information about the system’s design or operation and can
impact various aspects of system behavior, including security,
performance, and reliability [63]. In the context of this work,
we address uncertainties in software architecture models and
their influence on confidentiality. Here, we focus on software-
architectural uncertainty that resolves the lastest during the
deployment and can thus effectively be addressed using archi-
tectural approaches [29].

Hahner et al. [29] proposed a classification of architectural
uncertainty that can be applied to DFDs to model the impact
of uncertainty on data flow and constraint violations. The
classification identifies different types of uncertainties, each
related to architectural elements in the DFD: Behavior uncer-
tainties relate to the specific actions or functions process nodes
perform. For example, there may be uncertainty regarding
whether a node will apply encryption or simply forward the
incoming data. Node uncertainties describe the properties of
external nodes. For instance, it may be uncertain whether a
database server is deployed within or outside the European
Union. Flow uncertainties affect the possible routes that data
may take through the system, including potential variations
in the data pathway. For example, there may be uncertainty
about whether data will bypass certain nodes or flow through
additional processing stages.

Hahner [27] model these uncertainties in DFDs using
the Architecture-Based and Uncertainty-Aware Confidentiality
Analysis (ABUNAI) approach, which analyzes combinations
of uncertainty scenarios to identify confidentiality violations.
This helps to identify risks and violations earlier in the design
process and providing the fundamentals for this work.

C. Machine learning techniques

This work employs different supervised and unsupervised
machine learning techniques to analyze the impact of dif-
ferent uncertainties on data flows and identify patterns that
could lead to confidentiality violations. The goal is to detect
violations and understand their underlying causes, helping to
prioritize uncertainties for resolution. This section provides a
short overview of the utilized techniques. Exploratory Factor
Analysis (EFA) simplifies complex datasets by uncovering
latent factors underlying variable relationships [33, 72]. Prin-
cipal Component Analysis (PCA) reduces dimensionality by
transforming variables into orthogonal components, revealing
primary variance sources [1]. Random Forests (RF) improves
predictive accuracy through an ensemble of decision trees, es-
pecially in high-dimensional data [14]. Linear Regression (LR)
and Logistic Regression (LGR) model relationships between
inputs and outcomes, offering interpretable coefficients and
binary classification, respectively [46, 60]. Linear Discriminant
Analysis (LDA) enhances class separation by projecting data
into lower-dimensional space [5].



Database
Service

Online
Shop

? U2: Data Processing?U1: User Input

On Premise ServerCloud Service

? «deploy»U3: Deployment

?
U4: Location

Figure 1: Running example of a simple online shop

III. RUNNING EXAMPLE

We illustrate the application and impact of our mitigation
approach with a simplified model of an online shop. Figure 1
shows the architecture model consisting of the user, two
software components, and two data storages and has been
used in similar work [31]. The User sends data to the Online
Shop component, which directs it to the Database Service. The
Database Service stores data on either the Cloud Service or
the On-Premise Server. We identified four uncertainties in this
online shop, depicted by dotted cycles with a question mark.
U1 The user input may contain either public or personal data
U2 The data might get sanitized or forwarded unfiltered
U3 It is unclear on which server the data will be stored
U4 The location of the cloud server is unclear, e.g., inside or

outside the European Union.
We define two confidentiality requirements for our model:
personal data shall never leave the European Union and shall
always be sanitized. Violations of these requirements could
lead to data breaches or regulatory non-compliance.

We use the predicates hasDataLabel and hasNodeLabel
to tag each data flow and component with specific character-
istics, verifying compliance with confidentiality requirements:
Using these predicates, we can formalize our constraints:

hasDataLabel(Personal) ∧ ¬hasNodeLabel(nonEU) (1)
hasDataLabel(Personal) ∧ hasDataLabel(Sanizited) (2)

Depending on the configuration of our model, both are vio-
lated. The first is violated if the user inputs personal data that
flows to the cloud server with a non-EU location. The second
is violated if the user inputs personal data that is not sanitized
at the processing node

To automatically modify the model without violating con-
straints, one could try all combinations of uncertainty values
and check for constraint violations in each resulting model.

As displayed in Table I, this leads to an exponentially
increasing number of configurations that need to be checked,
with two options for four uncertainties sources being 24 = 16.

Input Processing Deployment Location Violation

Personal Sanitized On Premise Server EU False
Personal Sanitized On Premise Server non EU False
Personal Sanitized Cloud Server EU False
Personal Sanitized Cloud Server non EU True
Personal Unfiltered On Premise Server EU True
Personal Unfiltered On Premise Server non EU True
Personal Unfiltered Cloud Server EU True
Personal Unfiltered Cloud Server non EU True
Public Sanitized On Premise Server EU False
Public Sanitized On Premise Server non EU False
Public Sanitized Cloud Server EU False
Public Sanitized Cloud Server non EU False
Public Unfiltered On Premise Server EU False
Public Unfiltered On Premise Server non EU False
Public Unfiltered Cloud Server EU False
Public Unfiltered Cloud Server non EU False

Table I: All possible combinations for the given uncertainties

We found a solution if one of these configurations does not
violate the given constraints.

When looking at the table, one might notice that certain
uncertainties, such as the nature of user input, have a more
significant impact on the outcome. For example, if the input
is public, a violation is avoided regardless of other settings.
Therefore it makes sense to try variations of the important
uncertainties first to reduce the complexity and runtime.

In complex models with multiple uncertainties, prioritizing
them manually is impractical, tedious, and error-prone, which
motivates our machine-learning approach to efficiently identify
important uncertainties based on existing violations, making
it suitable for scalable applications in complex models. While
checking 16 combinations for 4 uncertainties by hand may be
doable, checking 1024 for 10 is not.

IV. OVERVIEW OF THE APPROACH

This paper introduces a novel approach for analyzing and
modifying DFDs to ensure compliance with confidentiality
constraints by addressing uncertainties within the model. This
section serves as an overview of our process, displayed in
Figure 2, which centers on identifying and mitigating uncer-
tainties that impact confidentiality violations. Our approach
systematically identifies and configures valid scenarios in the
input model. By only changing the uncertainties necessary to
make the model compliant with confidentiality requirements,
our approach preserves as much of the original model as
possible while reducing the analysis runtime.

In Contribution C1, we pinpoint uncertainties that cause
constraint violations. To achieve this, we implement a
machine-learning ranking system that distinguishes relevant
uncertainties from those that do not affect confidentiality. We
begin the process by transforming the output of an uncertainty-
aware confidentiality analysis into categorical training data,
which highlights the effects of various modeled scenarios on
constraint violations. We then apply a range of machine learn-
ing techniques—both unsupervised and supervised—including
EFA, PCA, RF, LR, LGR and LDA, to rank uncertainties



Generate
training data

Rank
scenarios

Try next
combination

Model contains
violations?

All combinations
checked?

Mitigation
successful

Mitigation
failed

Yes

YesNo

No

Figure 2: Simplified pipeline of the approach

based on their potential to cause violations. This ranking helps
prioritize uncertainties in subsequent steps.

In Contribution C2, we iteratively mitigate these ranked un-
certainties by systematically testing combinations of scenarios
to resolve constraint violations while minimizing disruption to
the model. We use a greedy approach to apply various mitiga-
tion strategies, ranging from modifying single uncertainties to
testing broader subsets, to find configurations that best satisfy
confidentiality constraints. This iterative refinement ensures a
balance between runtime efficiency and minimal impact on
the original model structure, adjusting only the most critical
uncertainties for achieving compliance.

In cases like the running example where multiple solutions
are possible, the approach further optimizes for solutions
that modify the fewest number of uncertainties. By exploring
alternative configurations that leave as many uncertainties as
possible intact, we aim to retain the flexibility of the original
DFD, while complying with confidentiality constraints.

This combined method offers an advancement by enabling
automated, efficient mitigation of confidentiality violations
within uncertain DFDs.

V. RANKING UNCERTAINTIES BASED ON CONSTRAINT
VIOLATIONS

This section introduces contribution C1, an approach for
ranking uncertainties by analyzing their impact on constraint
violations through machine learning techniques. We begin
with methods for generating training data tailored for ranking
purposes, then techniques for assessing the importance of
uncertainties, and finally, a strategy for aggregating rankings
across multiple constraints. Each step leverages machine learn-
ing to systematically prioritize uncertainties with the greatest
potential impact on confidentiality or other constraints.

A. Generating Training Data for Ranking Uncertainties

The process begins with generating training data for un-
certainty ranking using TFGs, each representing a unique
combination of uncertainty scenarios. ABUNAI checks each
TFG to determine whether a confidentiality violation occurs
[27]. We translate each TFG and its violation status into
categorical data, enabling machine learning models to analyze
the conditions that lead to violations.

We generate separate training data for each constraint. Each
row corresponds to a TFG, while each column represents
a specific uncertainty scenario. When a TFG does not flow

U1 U2 U3 U4 C1 C2

S1 S1 S1 - False False
S1 S1 S1 - False False
S1 S1 S2 S1 False False
S1 S1 S2 S2 True False
S1 S2 S1 - False True
S1 S2 S1 - False True
S1 S2 S2 S1 False True
S1 S2 S2 S2 True True
S2 S1 S1 - False False
S2 S1 S1 - False False
S2 S1 S2 S1 False False
S2 S1 S2 S2 False False
S2 S2 S1 - False False
S2 S2 S1 - False False
S2 S2 S2 S1 False False
S2 S2 S2 S2 False False

Table II: Training data for Figure 1, where U stands for
uncertainty, C for constraint, S for scenario and - for irrelevant

through all uncertainty sources, we use placeholder values for
missing uncertainties to maintain a consistent tabular format.
In the running example case, the cloud server’s location is
irrelevant if we store data on the on-premise server. This
structured approach allows for machine learning models to
process data even when some uncertainties are absent in
specific scenarios.

To balance the dataset, we include both TFGs that cause
confidentiality violations and those that do not. This improves
the model’s ability to identify critical uncertainties by reducing
the noise from irrelevant configurations. The running example
from Section III consists of 4 uncertainty sources, with 2
scenarios each and 2 constraints, which gets transformed into
the categorical training data displayed in Table II.

B. Ranking Uncertainties for Importance

Using machine learning, we can prioritize uncertainties by
analyzing how their different scenarios influence constraint
violations. Both unsupervised and supervised learning ap-
proaches are employed to derive rankings.

Unsupervised Approaches rely on identifying underly-
ing patterns in TFG-based training data. Techniques such
as PCA and EFA are useful for reducing data complexity
while retaining the most critical variables[1, 70]. PCA pri-
oritizes uncertainties explaining the highest variance in the
data, generating components emphasizing highly correlated
variables. EFA, on the other hand, focuses on latent factors that
reveal relationships between uncertainties. Both approaches
rank uncertainties by the degree to which they correlate with
key data patterns, derived from component or factor loadings,
as outlined in Algorithm 1. This method is effective for
uncovering subtle patterns across TFGs that might influence
constraint violations.

Supervised Approaches provide direct insight into the
relationship between uncertainties and violations by assessing
confidentiality violations in different scenarios. Techniques
such as LDA, RF, LR, LGR are applied to classify TFGs by
violation status [44]. Each technique assesses the importance



Algorithm 1 Ranking Unsupervised

function RANKUNSUPERVISED(data rows)
ranking ← {}
result ← CREATECOMPONENTS(data rows)
components ← result.Components
loadings ← components.Loadings
for loading ∈ loadings do

continue for Constraint violated column
ranking[loading.Name] ← SUM(loading.Values)

end for
return SORTDICTDESCENDING(ranking)

end function

of each uncertainty based on its impact on the prediction out-
come. For instance, LDA calculates linear discriminants that
separate violation and non-violation cases, with coefficients
indicating the influence of each uncertainty [5]. In contrast,
Random Forests measure variable importance through mean
decreases in impurity across decision trees, capturing both
individual and combined effects of uncertainties [14, 22].
Algorithm 2 illustrates the process for deriving feature im-
portance from each model, providing a foundation for ranking
uncertainties by their contribution to constraint violations.

Algorithm 2 Ranking Supervised

1: function RANKSUPERVISED(data rows)
2: model ← SupervisedMachineLearningTechnique()
3: FITMODEL(model, data rows)
4: feature imporances ← model.Feature importances
5: feature names ← data rows.Column names
6: return {feature names, feature imporances}
7: end function

To illustrate the ranking result, we rank the training data
for the running example shown in Table II with logistic
regression. Table III shows the importance of uncertainties for
the individual constraints. In Table IIIa shows that U4 is the
most important uncertainty for constraint 1, which makes sense
since deploying the cloud server inside the EU will never lead
to a violation. Similarly, Table IIIb shows that U1 and U2 are
equally important for constraint 2 because only combinations
of these two can lead to a sanitization violation.

Uncertainty Importance

U4 0.6307
U1 0.5836
U3 0.5713
U2 0.5000

(a) Constraint 1

Uncertainty Importance

U1 0.6250
U2 0.6250
U3 0.5000
U4 0.5000

(b) Constraint 2

Table III: Individual importance of uncertainties for the run-
ning example

C. Aggregation of Rankings for Multiple Constraints

In systems with multiple constraints, such as the running
example, each constraint might yield a different ranking for
the same set of uncertainties. We aggregate rankings from
individual constraints to construct an overall ranking, focusing
only on those globally impacting confidentiality violations. We
normalize each constraint-specific ranking by summing and di-
viding by the total, ensuring all scores range from 0 to 1. This
normalization maintains comparability across constraints with
varying levels of severity in violations. Several aggregation
methods are evaluated, each offering unique benefits:

1) Simple Summation: This method sums the normalized
scores from each constraint-specific ranking, producing a cu-
mulative score. While straightforward, this approach elevates
uncertainties that are only moderately important across multi-
ple constraints but are not critical to any specific violation.

2) Exponential Decay: Applying e−r to the summed-up
rank r of each uncertainty reduces the impact of lower-
ranked uncertainties. This approach emphasizes the top-ranked
uncertainties from each constraint, providing a clearer focus
on the most significant factors.

3) Top-3 Emphasis: To highlight only the most critical
uncertainties, scores are assigned to only the top three ranked
uncertainties for each constraint, setting all others to zero.
While this approach risks missing lower-ranked yet impactful
uncertainties, it reduces noise from uncertainties with minimal
contributions to constraint violations.

This approach unifies constraint-specific rankings to identify
the uncertainties with the greatest potential for mitigating con-
fidentiality or compliance violations across complex models.
While the respective optimal aggregation strategy depends on
the structure of the DFD and the nature of the constraints,
our evaluation shows that exponential decay results in the
overall best rankings. To illustrate the aggregation, we use
the individual importance from the running example shown in
Table III aggregated using exponential decay. The results are
shown in Table IV and confirm that U1 is the most important
one because it can lead to violations of both constraints.

Uncertainty Importance

U1 1.3678
U4 1.0000
U2 0.3678
U3 0.1353

Table IV: Aggregated importance of uncertainties for the
running example

VI. MITIGATING CONFIDENTIALITY VIOLATIONS

We mitigate confidentiality violations by configuring the
software architecture to use a combination of uncertainty
scenarios that comply with confidentiality requirements. Our
process aims to find a violation-free model by generating and
evaluating new models in which high-ranking uncertainties
are iteratively combined and tried out. We iteratively replace
uncertainties with their concrete scenarios to produce new



model variations. We then check each model for confidentiality
violations. If we discover a violation-free model, the mitigation
is successful, and the process terminates. If not, the approach
continues, using other uncertainties in the ranking until no
further options are available. Our approach fails if no com-
bination of uncertainty scenarios satisfies all confidentiality
requirements. The chosen mitigation strategy determines how
many uncertainties we use per model generation.

A. Depth-First-Search
The simplest approach involves trying all combinations of
uncertainties ranked by appearance in the TFGs, allowing
a straightforward analysis without additional overhead. This
depth-first-search method often works well for small models,
as it avoids the time-consuming task of generating training
data and ranking the importance of uncertainties. However,
this strategy may lead to exponentially increasing runtime if
critical uncertainties appear closer to the end of the TFG. In
such cases, delays are significant, as more extensive analysis
is required to evaluate later uncertainties in the sequence. The
DFS approach serves as a baseline for our evaluation.

B. Incremental Increase in Uncertainties
In this method, uncertainties are iteratively included in small
increments: First, only the scenarios of the top-ranked uncer-
tainty are considered, then the combination of the top two,
then the top three, adding one uncertainty per iteration. We
generate and analyze a new model variant for each unique
scenario combination of these uncertainties. For the running
example, we would check all scenario combinations for {U1},
then {U1,U4}, then {U1,U4,U2} and finally {U1,U4,U2,U3}.
Using the public data scenario for U1 already satisfies all
constraints, so we can stop after the first iteration. This
approach is efficient when constraint violations are caused by
a few high-ranking uncertainties. However, frequently gener-
ating and evaluating models may increase runtime compared
to other approaches.

C. Fixed Subset Strategies
With a good ranking, we can assume that constraint-causing
uncertainties will likely appear in the top-ranked portion.
Therefore, a subset-based approach can improve efficiency
by reducing redundant combination checks. In this method,
uncertainties are split into varying amounts of batches, for
example, into four, three, or two batches. We evaluate each
subset by testing all scenario combinations within that batch
until we find a violation-free model, allowing the process to
halt early. If we do not find a solution within the current
batch, we include the next subset, expanding the pool of
uncertainties to test additional combinations. When using two
batches for the running example, we would check all scenario
combinations for {U1,U4}, and then {U1,U4,U2,U3}. As we
can satisfy all constraints within the first batch, we can stop
the process. This strategy performs efficiently when there are
many violation causing uncertainties that appear high in the
ranking. However, if some of these uncertainties rank lower
than half, the runtime increases as more subsets are evaluated.

D. Optimizing Modified Uncertainties

We defined an additional approach displayed in Algorithm 3
to minimize unnecessary uncertainty modifications that refines
the model by merging versions that differ by only a single
uncertainty. The algorithm works in combination with the pre-
vious strategies and returns a list of relevant scenarios, marks
irrelevant uncertainties. It is especially useful for architects
who want to retain as much modeled uncertainty as possible.
The algorithm identifies and merges models that differ by
one uncertainty, reducing unnecessary modifications. If two
models contain all possible scenarios of a particular source,
the algorithm marks that source as irrelevant for constraint
violations. Otherwise, the algorithm merges the models to
include the scenarios used for that source. We iterate the
process until no further optimizations are possible.

Algorithm 3 Optimize amount of uncertaintes

1: function SIMPLIFYMITIGATION(models : List of String,
scenarioAmounts : List of Integer)

2: newModels ← models
3: changeHappened ← true
4: while changeHappened do
5: changeHappened ← false
6: for all pairs of models (mi,mj) in newModels do
7: if models differ by one uncertainty u then
8: mergedModel ← mi ∪mj

9: if mergedModel satisfies scenarios then
10: u← irrelevant
11: end if
12: newModels← newModels ∪ mergedModel
13: newModels ← newModels \mi \mj

14: changeHappened ← true
15: end if
16: end for
17: end while
18: return newModels
19: end function

Through these strategies, the mitigation approach offers flexi-
ble ways to reduce runtime and ensure minimal alterations to
the model, balancing effectiveness and efficiency based on the
specific characteristics of each ranked uncertainty.

VII. EVALUATION

Our evaluation aims to assess whether the proposed mitigation
approach can accurately identify relevant uncertainties and
repair confidentiality violations while scaling well with an
increasing number of uncertainties. To answer this, we ran
exhaustive experiments on three software architecture models.
This section presents our evaluation plan, design, and results
and discusses threats to validity.

A. Goal, Questions, and Metrics

We use a Goal-Question-Metric (GQM) plan [6, 7] to structure
the evaluation. To enhance validity, we align our plan with
related work [28, 30] and use well-known metrics [36].



Our Goal is to evaluate the quality of our mitigation approach
compared to existing approaches [28, 30]. We ask the follow-
ing questions:
Q1 How precisely do the proposed ranker and aggregation

strategies identify relevant uncertainties?
Q2 How effective is the automatic mitigation in repairing

confidentiality violations?
Q3 How scalable are the proposed mitigation strategies?
Question Q1 asks about the precision of the ranking and
aggregation strategies. We evaluate and compare all previously
introduced ranking strategies, i.e., Exploratory Factor Analysis
(EFA), Principal Component Analysis (PCA), Random Forests
(RF), Linear Regression (LR), Logistic Regression (LGR),
and Linear Discriminant Analysis (LDA), see Section II.
Furthermore, we consider the three aggregation strategies
introduced in Section V, i.e., simple summation (SUM), ex-
ponential decay (EXP), and top-3 emphasis (Top3). To assess
the ranking results, we apply the often used Precision@K
(M1.1) metric that measures “the number of relevant items
at the top k positions of a ranked list” [36]. An uncertainty
is relevant, i.e., a true positive (TP) if it causes a confi-
dentiality violation. Otherwise, it is irrelevant, i.e., a false
positive (FP). For instance, Uncertainty U1 in our running
example is always relevant as it affects both confidentiality
requirements regardless of the other uncertainties. We calculate
Precision@K = TP

TP+FP ∈ [0, 1] with K being the rank of the
last relevant uncertainty. Otherwise, the ranking could ignore
relevant uncertainties and negatively impact the recall, which
shall be avoided in confidentiality analysis [28]. Put simply,
we investigate how many irrelevant uncertainties were ranked
among all relevant uncertainties, where lower is better.

Question Q2 evaluates the effectiveness of our automatic
mitigation in producing repaired models without confidential-
ity violations. To answer this question, we compare the number
of confidentiality violations before the mitigation (M2.1) and
after the mitigation (M2.2). Trivially, the mitigation shall
remove identified confidentiality violations without reintroduc-
ing new violations. Thus, lower is better.

Last, Question Q3 asks about the scalability of the miti-
gation. We consider the mitigation strategies that determine
how uncertainties are selected for the mitigation, i.e., incre-
mental increase (INCREASE) and fixed subsets splitting the
relevant uncertainties into two halves (HALF), or four quarters
(QUARTER), see Section VI. We compare these strategies
against each other and against Depth-First-Search (DFS),
representing the baseline of the ABUNAI approach. Here, we
want to asses which strategy is expedient and whether we can
outperform the state of the art. We measure the runtime (M3.1)
of the approach for rising numbers of relevant and irrelevant
uncertainties to evaluate the scalability.

B. Scenarios

We selected three diverse software architectures in the form
of DFDs as evaluation scenarios. They differ in size (5 to 18
nodes), interconnectedness, and the number of uncertainties
(7 to 21), representing a range of real-world architectures.

These systems also span varied technological and functional
domains, including open-source microservices and secure on-
line banking. This heterogeneity demonstrates the applicability
of our approach to a broad spectrum of architectures with
similar characteristics.

a) Spring Boot: Kothagal [38] created this open-source
microservice architecture, and Schneider et al. [54] derived its
DFD representation. This model contains 5 nodes representing
1 user interface, 3 internal services and 1 data storage. The
nodes are connected by 6 edges. The model contains 7 un-
certainties, and 3 out of those cause confidentiality violations.
For this model we check the following constraints [48]:

hasDataLabel(entrypoint) =⇒ hasDataLabel(encrypted connection)

hasNodeLabel(internal) =⇒ hasDataLabel(encrypted connection)

hasNodeLabel(local logging) =⇒ hasNodeLabel(internal)

b) Tap and Eat: Ferrater [23] created this open-source
architecture, and Schneider et al. [54] derived its DFD. This
model displays a microservice architecture containing 9 nodes
representing 8 internal services and 1 data storage. The nodes
are connected by 16 edges. The model contains 21 uncertain-
ties, and 4 out of those cause confidentiality violations. For
this model we check the following constraints [48]:

hasNodeLabel(internal) =⇒ hasDataLabel(auth request)

hasNodeLabel(login attempts reg) =⇒ hasNodeLabel(auth server)

hasDataLabel(entrypoint) =⇒ hasDataLabel(encrypted connection)

hasNodeLabel(local logging) =⇒ hasNodeLabel(internal)

c) Online Banking: The last model is our own creation
and displays an online banking architecture consisting of 18
nodes representing 2 external actors, 3 user interfaces, 10
internal services and 3 data storages. The nodes are connected
by 20 edges. The model contains 9 uncertainties, and 3 out
of those cause confidentiality violations. For this model we
check the following constraints:

hasNodeLabel(nonEU) =⇒ ¬hasDataLabel(Personal)

hasNodeLabel(Processable) =⇒ ¬hasDataLabel(Encrypted)

hasNodeLabel(Develop) =⇒ ¬hasDataLabel(Personal)

C. Design

To evaluate the precision of our ranking, we created reference
rankings by manually examining the evaluation scenarios
and identifying the relevant uncertainties. We consider these
uncertainties to be the true positives. Afterward, we executed
our mitigation approach with different combinations of un-
certainty ranker and aggregation strategies and calculated the
Precision@K score.

To evaluate the effectiveness of our automatic mitigation
approach, we employed the ABUNAI framework [27]. The
analysis takes a DFDs and a list of constraints as input
and automatically checks for violations and their locations.
We use the output of this analysis to measure the number
of confidentiality violations detected both before and after
applying our mitigation.



To evaluate the scalability of our approach, we manually scaled
the evaluation scenarios. We iteratively duplicated subgraphs
to scale the Spring Boot and Online Banking model up, which
increased the nodes and uncertainty counts. Conversely, to
scale the Tap and Eat model down, we removed subgraphs step
by step. We measured the mitigation runtime in milliseconds
on an Apple M3 Pro CPU with 18 Gigabytes of RAM for
every evaluation scenario and scaling step.

D. Results and Discussion

1) Ranking of uncertainties: We evaluated each uncertainty
ranker with every aggregation strategy, resulting in 18 Preci-
sion@K scores per model. The results for the Spring Boot
model are displayed in Figure 3a, for the Tap and Eat model
in Figure 3b, and for the Online Banking model in Figure 3c.
Each bar represents a Precision@K value ranging from 0 to
1, with 1 indicating a perfect rating.

The results demonstrate that supervised rankers consistently
outperformed unsupervised ones across all evaluation scenar-
ios, with Logistic Regression and Random Forest emerging
as the top-performing methods. The Exponential and Top3
aggregation strategies combined with Logistic Regression con-
sistently produce perfect rankings across all models. This
performance suggests that supervised rankers align well with
the task, effectively capturing the relevant uncertainties.

In contrast, unsupervised rankers, such as EFA and PCA,
underperformed, especially in models with high variance
among uncertainties. This likely stems from their reliance on
shared variance, which can introduce noise when unrelated
variables correlate with the target constraints.

The Exponential and Top3 aggregation methods excelled
by isolating top-ranked uncertainties directly impacting vi-
olations, focusing on the most critical uncertainties without
diluting from lower-ranked factors. Conversely, the Sum ag-
gregation method performed the worst across all models, likely
due to its even distribution of importance, which introduces
random noise and reduces precision.

In summary, by combining logistic regression with expo-
nential decay, we achieved a perfect ranking of uncertainties
across all evaluation scenarios.

2) Effectiveness of the mitigation: To evaluate the effec-
tiveness of our automatic mitigation approach, we employed
the ABUNAI on three evaluation scenarios. We then measured
the number of confidentiality violations detected both before
and after applying our mitigation.

The results, summarized in Table V, display that prior to
mitigation, the Spring Boot model exhibited 3 confidentiality
violations, the Tap and Eat model had 9, and the Online
Banking Model recorded 4 violations. After applying our mit-
igation approach, all models demonstrated zero confidentiality
violations. These findings confirm the effectiveness of our
approach in mitigating confidentiality violations.

3) Scalability: To evaluate the scalability of our mitiga-
tion approach, we modified the models by duplicating or
removing subgraphs. This adjustment yielded models with
uncertainty counts ranging from 7 to 22. We further maintained

Before Mitigation After Mitigation

Spring Boot Model 3 0
Tap and Eat Model 9 0
Online Banking Model 4 0

Table V: Confidentiality violations identified before and after
mitigation

a proportional distribution of relevant to total uncertainties to
preserve model behavior and structure. This variation provides
a broader set of data points for evaluating scalability. We
executed the mitigation approach multiple times for each un-
certainty level, recording the average runtime in milliseconds
on a logarithmic scale. The results are shown in Figure 4.

The scaled Spring Boot and Online Banking models demon-
strate consistent results. The Depth-First Search baseline scales
exponentially, at a rate of 2n for n uncertainties, while our
approach achieves a more efficient scaling rate of approxi-
mately 2

n
2 . This efficiency is attributed to the effective ranking

of uncertainties, which allows our method to consider only
about half the scenario combinations necessary to mitigate
confidentiality violations. Notably, a fixed batch size that splits
uncertainties into two subsets yielded optimal results in these
scenarios, which stems from the high number of relevant
uncertainties.

In contrast, the Tap and Eat model exhibits a different
scaling pattern. The Depth-First Search baseline continues
to scale with 2n for n uncertainties, yet our fixed batch
size approach is less efficient here due to the lower count
of relevant uncertainties. However, the iterative incremental
mitigation strategy outperforms other approaches, scaling at an
approximate rate of 2

n
2 . This result aligns with expectations,

as a lower number of relevant uncertainties benefits from
incremental adjustments rather than fixed batches.

Overall, our mitigation approach introduces overhead, re-
sulting in the baseline being faster on smaller models. As
we go over 15 uncertainties, our mitigation approaches con-
sistently outperform the baseline with up to 60 times faster
mitigation for the Online Banking model at 22 uncertainties.

E. Threats to validity

We structure the discussion of threats to validity based on
the guidelines by Runeson and Höst [53]. Regarding the
internal validity, one threat is the accuracy of the model-
based confidentiality analysis [30] used to assess confiden-
tiality violations in the repaired models. Wrong results would
negatively affect the correctness of our results. However, as
this analysis has already been comprehensively evaluated, we
consider this threat to be negligible. Regarding the external
validity, the choice of cases and evaluation scenarios can limit
the generalizability of our results. To address this, we choose
models from diverse backgrounds, with the two from Schnei-
der et al. [54] being derived from real-world open-source
projects. To ensure construct validity, we applied a GQM
plan with well-known metrics such as Precision@K. Last, we
involved multiple researchers in the process to enhance the



EFA PCA RF LR LGR LDA
Ranker Type

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on
@

K
Sum
Exp
Top3

(a) Spring Boot

EFA PCA RF LR LGR LDA
Ranker Type

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

@
K

Sum
Exp
Top3

(b) Tap and Eat

EFA PCA RF LR LGR LDA
Ranker Type

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

@
K

Sum
Exp
Top3

(c) Online Banking

Figure 3: Precision@K for different uncertainty rankers and aggregation strategies

3/7 5/10 6/14 8/18
Relevant/Total Uncertainties

103

104

105

Ru
nt

im
e 

[m
s]

DFS
HALF
QUARTER
INCREASING

(a) Spring Boot

2/7 2/10 3/14 3/18 4/21
Relevant/Total Uncertainties

103

104

Ru
nt

im
e 

[m
s]

DFS
HALF
QUARTER
INCREASING

(b) Tap and Eat

3/9 5/14 6/18 8/22
Relevant/Total Uncertainties

103

104

105

106

107

Ru
nt

im
e 

[m
s]

DFS
HALF
QUARTER
INCREASING

(c) Online Banking

Figure 4: Runtime scalability for different mitigation strategies

reliability of our results and minimize the bias in annotating
our models. We did not consider hypothesis testing in our
evaluation because every step in our process is deterministic,
given the same input model. Therefore, the only variance in
our runtime measurements stems from differing CPU loads. To
reduce this variability, we averaged runtimes from nine runs
per measurement. Last, we provide supplemental material as
data set [47] to address the availability of evolution artifacts
in software architecture research [37]. This includes all code
artifacts, results, and instructions on reproducing them.

VIII. RELATED WORK

In this paper, we consider uncertainty within the software
architecture to enable the automated repair of confidentiality
violations. We identify three areas of work related to this
paper. First, work from the field of software architecture
research that deals with uncertainty, which is often related
to self-adaptive systems [32, 67, 68]. Second, approaches to

confidentiality analysis at design time that enable the early
identification of confidentiality violations [10, 12, 13, 57], also
while considering uncertainty [28, 30]. Third, using machine
learning to mitigate security issues [2, 41, 59]. We summarize
these research directions in the following.

Architectural analysis and mitigation under uncertainty:
Numerous papers aim to understand better the representation
and impact of uncertainty on architectural models. Troya et
al. [61] performed a survey to investigate the representation
of uncertainty in models and found that modeling uncertainty
as variation models and scenarios is common, especially in
design space exploration. Andersson et al. [4] support this
view by presenting modeling dimensions of self-adaptive
systems, as does the recently proposed OMG PSUM standard
[49]. Researchers have proposed numerous classifications [45,
51, 52] to investigate the nature of uncertainty, including some
focused on security-related fields like access control [15] and
confidentiality [29]. Comprehensive frameworks have been



researched to investigate uncertainty in software systems, e.g.,
RELAX [69], Rainbow [24], PerOpteryx [40], ArcheOpterix
[3], GuideArch [19], and DeTUM [21]. Here, Hezavehi et al.
[32] and Sobhy et al. [58] recently conducted surveys and
found that addressing uncertainty in design time is expedient
and mitigation should be systematically considered. However,
most existing approaches focus only on analysis rather than
mitigation and do not explicitly support confidentiality. This
can severely limit their applicability [30, 64] to identify and
repair confidentiality violations under uncertainty. Researchers
have highlighted the challenge of creating comprehensive end-
to-end approaches [68]. Here, especially considering multiple
uncertainty sources and their interactions is considered to
be challenging [16, 17]. The work presented in this paper
addresses this gap by considering both the analysis and the
mitigation of uncertainty at design time, which is tailored to
confidentiality violations.

Architecture-based confidentiality analysis: Numerous
approaches have been proposed to identify confidentiality
violations using the architectural abstraction, e.g., data flow-
based confidentiality analysis [12, 56, 57], or architecture-
based access control analysis [64, 65]. Furthermore, broader
approaches to model-based security analysis, e.g. UMLsec
[35], or SecDFD [50, 62]. Despite focussing on security,
these approaches lack support for confidentiality or automated
model repair. More recently, uncertainty-aware confidentiality
analysis has been proposed, e.g., by extending the PerOpteryx
framework [66], by tracing uncertainty in data flow diagrams
[30], or by combining data flow analysis with fuzzy inference
to represent uncertainty [11]. Hahner et al. [28] proposed an
uncertainty impact analysis to predict uncertainty’s potential
impact on software architectures’ confidentiality. However,
these approaches only focus on analyzing software architec-
tures without considering mitigating confidentiality violations.
The work presented in this paper addresses this by combining
analysis and mitigation into one comprehensive approach.

Machine learning addressing security: More recently,
machine learning has been used more thoroughly to address
security issues such as confidentiality violations. Ahsan et al.
[2] give an overview of common security threats and which
machine learning techniques can be used to mitigate them,
e.g., deep learning or reinforcement learning. One example is
the work of Kronjee et al. [41], who extract security-related
features from source code to use in models like decision trees
and random forests. Another recently proposed approach by
[59] proposed combining classical program analysis, such as
data flow analysis, with deep learning to increase the accuracy
while reducing the runtime. Although applying machine learn-
ing seems to be expedient, these approaches lack the required
explainability [8, 31] of issues to software engineers and the
abstraction of the software architecture. Choosing the right
abstraction and representation to investigate confidentiality
greatly impacts the understandability of security experts [55].
Furthermore, only considering source code in the analysis
limits the applicability at design time, which is required for
early mitigation to minimize costs [9]. We address this by in-

corporating machine learning into data flow analysis at design
time and using this abstraction to enhance the explainability
of identified and repaired confidentiality violations.

IX. CONCLUSION

In this paper, we introduced an approach to mitigate confiden-
tiality violations in software architectures utilizing machine
learning. Specifically, we contributed C1, a method for ranking
critical uncertainties that lead to confidentiality violations
by leveraging Data Flow Diagrams combined with machine
learning techniques, and C2, an automated framework for
mitigating confidentiality violations in software architectures.

Our exhaustive experiments demonstrate that logistic re-
gression with exponential decay provides the most accurate
ranking of uncertainties with an ideal Precision@K score
of 1. This accurate ranking and incremental scenario testing
notably reduce the mitigation runtime. In our evaluation, this
improvement led to a runtime reduction of up to 60 times,
decreasing the duration from 2 hours to just 2 minutes.
Even on average, our approach still outperforms the state
of the art. Furthermore, our approach successfully mitigates
confidentiality violations in software architectures.

This work bridges the gap between existing analysis frame-
works, which primarily focus on identifying confidentiality
violations, and an automatic mitigation approach that assists
software architects in efficiently addressing confidentiality
challenges at design time. Our approach automates uncertainty
prioritization and resolution, enhancing the scalability of con-
fidentiality maintenance in complex systems ensuring that data
protection measures are more manageable and reliable. This
supports software architects in mitigating the negative effects
of uncertainty sources that resolve at design time or can at
least partially be addressed using the software architecture.

Future work could extend this framework by automatically
generating scenarios using machine learning trained on real-
world software architectures, which would further reduce the
manual effort of software architects. Conducting additional
experiments with more complex mitigation strategies, such as
clustering uncertainties, could further reduce the analysis run-
time. Additionally, we plan to explore combining SAT solvers
with fine-grained cost estimation to identify a configuration
that satisfies all confidentiality requirements while minimizing
the cost of the mitigation.

In summary, this paper contributes a novel, scalable solution
for mitigating confidentiality violations in architecture mod-
els under uncertainty, underlining the benefits of combining
architecture-based analysis with machine learning techniques
to support secure software development.

ACKNOWLEDGMENT

This work was supported by the topic Engineering Secure
Systems of the Helmholtz Association (HGF) and by KASTEL
Security Research Labs, the BMBF (German Federal Ministry
of Education and Research) grant number 16KISA086 (ANY-
MOS), and the NextGenerationEU project by the European
Union (EU). We like to thank Jonas Koch and Benjamin Arp.



REFERENCES

[1] H. Abdi and L. J. Williams, “Principal component analysis,” Wi-
ley interdisciplinary reviews: computational statistics, vol. 2, no. 4,
pp. 433–459, 2010.

[2] M. Ahsan et al., “Cybersecurity threats and their mitigation approaches
using machine learning—a review,” Journal of Cybersecurity and
Privacy, vol. 2, no. 3, pp. 527–555, 2022.

[3] A. Aleti et al., “ArcheOpterix: An extendable tool for architecture
optimization of AADL models,” in 2009 ICSE Workshop on Model-
Based Methodologies for Pervasive and Embedded Software, 2009,
pp. 61–71.

[4] J. Andersson et al., “Modeling dimensions of self-adaptive software
systems,” in Software Engineering for Self-Adaptive Systems, 2009,
pp. 27–47.

[5] S. Balakrishnama and A. Ganapathiraju, “Linear discriminant analysis-
a brief tutorial,” Institute for Signal and information Processing,
vol. 18, no. 1998, pp. 1–8, 1998.

[6] V. R. Basili, “Software modeling and measurement: The goal/ques-
tion/metric paradigm,” Tech. Rep., 1992.

[7] V. R. Basili and D. M. Weiss, “A methodology for collecting valid soft-
ware engineering data,” IEEE Transactions on Software Engineering,
vol. SE-10, no. 6, pp. 728–738, 1984.

[8] M. M. Bersani et al., “A conceptual framework for explainability
requirements in software-intensive systems,” in 2023 IEEE 31st In-
ternational Requirements Engineering Conference Workshops (REW),
2023, pp. 309–315.

[9] B. Boehm and V. Basili, “Software defect reduction top 10 list,”
Computer, vol. 34, no. 1, pp. 135–137, 2001, Conference Name:
Computer.

[10] N. Boltz, M. Walter, and R. Heinrich, “Context-based confidentiality
analysis for industrial IoT,” in SEAA, 2020, pp. 589–596.

[11] N. Boltz et al., “Handling environmental uncertainty in design time
access control analysis,” in SEAA, 2022, pp. 382–389.

[12] N. Boltz et al., “An extensible framework for architecture-based data
flow analysis for information security,” in European Conference on
Software Architecture, Springer, 2023, pp. 342–358.

[13] N. Boltz et al., “Modeling and analyzing zero trust architectures
regarding performance and security,” in Software Architecture, 2024,
pp. 253–269.

[14] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32,
2001.

[15] T. Bures et al., “Capturing dynamicity and uncertainty in security and
trust via situational patterns,” in Leveraging Applications of Formal
Methods, Verification and Validation: Engineering Principles, 2020,
pp. 295–310.

[16] J. Camara et al., “Uncertainty flow diagrams: Towards a systematic
representation of uncertainty propagation and interaction in adaptive
systems,” in Proceedings of the 19th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, 7,
2024, pp. 37–43.

[17] J. Cámara et al., “The uncertainty interaction problem in self-adaptive
systems,” SoSyM, vol. 21, no. 4, pp. 1277–1294, 1, 2022.

[18] T. DeMarco, “Structured analysis and system specification. yourdon,”
Inc., New York, New York, 1978.

[19] N. Esfahani, S. Malek, and K. Razavi, “GuideArch: Guiding the
exploration of architectural solution space under uncertainty,” in ICSE,
ISSN: 1558-1225, 2013, pp. 43–52.

[20] C. of European Union. “REGULATION (EU) 2016/679 (general data
protection regulation).” (2016), [Online]. Available: https : / /eur- lex .
europa.eu/eli/reg/2016/679/2016-05-04 (visited on 01/19/2021).

[21] M. Famelis and M. Chechik, “Managing design-time uncertainty,”
Software & Systems Modeling, vol. 18, no. 2, pp. 1249–1284, 1, 2019.

[22] Feature importances with a forest of trees, https : / / scikit - learn .
org / stable / auto examples / ensemble / plot forest importances . html,
Accessed: 2024-08-12.

[23] J. Ferrater, Tap-and-eat-microservices, Accessed: 2024-11-16, 2024.
[Online]. Available: https : / / github . com / jferrater / Tap - And - Eat -
MicroServices.

[24] D. Garlan et al., “Rainbow: Architecture-based self-adaptation with
reusable infrastructure,” Computer, vol. 37, no. 10, pp. 46–54, 2004.

[25] M. Glinz, “Requirements engineering i,” Nicht funktionale Anforderun-
gen. Universität Zürich, Institut für Informatik, Zürich, 2006.

[26] S. Hahner, “Dealing with uncertainty in architectural confidentiality
analysis,” in Proceedings of the Software Engineering 2021 Satellite
Events, 2021, pp. 1–6.

[27] S. Hahner, “Architecture-based and uncertainty-aware confidentiality
analysis,” Dissertation, Karlsruhe Institute of Technology (KIT), 2024.

[28] S. Hahner, R. Heinrich, and R. Reussner, “Architecture-based uncer-
tainty impact analysis to ensure confidentiality,” in 2023 IEEE/ACM
18th Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), ISSN: 2157-2321, 2023, pp. 126–132.

[29] S. Hahner et al., “A classification of software-architectural uncertainty
regarding confidentiality,” in E-Business and Telecommunications,
2023, pp. 139–160.

[30] S. Hahner et al., “Model-based Confidentiality Analysis under Un-
certainty,” in 2023 IEEE 20th International Conference on Software
Architecture Companion (ICSA-C), 2023, pp. 256–263.

[31] S. Hahner et al., “Arc³n: A collaborative uncertainty catalog to address
the awareness problem of model-based confidentiality analysis,” in
ACM/IEEE 27th International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS Companion ’24), 2024.

[32] S. M. Hezavehi et al., “Uncertainty in self-adaptive systems: A research
community perspective,” vol. 15, no. 4, 2021.

[33] D. Hooper, “Exploratory factor analysis,” 2012.
[34] ISO, “ISO/IEC 27000:2018(e) information technology – security tech-

niques – information security management systems – overview and
vocabulary,” Standard, 2018.

[35] J. Jürjens, “UMLsec: Extending UML for secure systems develop-
ment,” in UML 2002 — The Unified Modeling Language, red. by
G. Goos, J. Hartmanis, and J. van Leeuwen, vol. 2460, Series Title:
Lecture Notes in Computer Science, 2002, pp. 412–425.

[36] P. Kar, H. Narasimhan, and P. Jain, “Surrogate functions for maxi-
mizing precision at the top,” in Proceedings of the 32nd International
Conference on Machine Learning, vol. 37, 2015, pp. 189–198.

[37] M. Konersmann et al., “Evaluation methods and replicability of
software architecture research objects,” in ICSA, 2022, pp. 157–168.

[38] K. Kothagal, Spring boot microservices workshop, Accessed: 2024-
11-16, 2024. [Online]. Available: https://github.com/koushikkothagal/
spring-boot-microservices-workshop.

[39] A. Koziolek, “Automated Improvement of Software Architecture Mod-
els for Performance and Other Quality Attributes,” Ph.D. dissertation,
2011. DOI: 10.5445/IR/1000024955.

[40] A. Koziolek, H. Koziolek, and R. Reussner, “PerOpteryx: Automated
application of tactics in multi-objective software architecture optimiza-
tion,” in ISARCS, 20, 2011, pp. 33–42.

[41] J. Kronjee, A. Hommersom, and H. Vranken, “Discovering software
vulnerabilities using data-flow analysis and machine learning,” in
Proceedings of the 13th International Conference on Availability,
Reliability and Security, 27, 2018, pp. 1–10.

[42] P. G. Larsen, N. Plat, and H. Toetenel, “A formal semantics of data
flow diagrams,” Formal aspects of Computing, vol. 6, pp. 586–606,
1994.

[43] M. Lehman and J. C. Fernáandez-Ramil, “Software evolution,” Soft-
ware evolution and feedback: Theory and practice, p. 7, 2006.

[44] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable
ai: A review of machine learning interpretability methods,” Entropy,
vol. 23, no. 1, p. 18, 2020.

[45] S. Mahdavi-Hezavehi, P. Avgeriou, and D. Weyns, “A classification
framework of uncertainty in architecture-based self- adaptive systems
with multiple quality requirements,” Managing Trade-Offs in Adapt-
able Software Architectures, p. 33, 2017.

[46] T. G. Nick and K. M. Campbell, “Logistic regression,” Topics in
biostatistics, pp. 273–301, 2007.

[47] N. Niehues, S. Hahner, and R. Heinrich, Supplementary material for
”an architecture-based approach to mitigate confidentiality violations
using machine learning”, 2025. DOI: 10.5281/zenodo.14723725.

[48] N. Niehues et al., “Integrating security-enriched data flow diagrams
into architecture-based confidentiality analysis,” 2024.

[49] Object Management Group, Precise semantics for uncertainty mod-
eling (PSUM), version 1.0 beta 2, 2024. [Online]. Available: https :
//www.omg.org/spec/PSUM/1.0/Beta2/PDF.

[50] S. Peldszus et al., “Secure data-flow compliance checks between
models and code based on automated mappings,” presented at the
2019 ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems (MODELS), 2019, pp. 23–33.

https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04
https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://github.com/jferrater/Tap-And-Eat-MicroServices
https://github.com/jferrater/Tap-And-Eat-MicroServices
https://github.com/koushikkothagal/spring-boot-microservices-workshop
https://github.com/koushikkothagal/spring-boot-microservices-workshop
https://doi.org/10.5445/IR/1000024955
https://doi.org/10.5281/zenodo.14723725
https://www.omg.org/spec/PSUM/1.0/Beta2/PDF
https://www.omg.org/spec/PSUM/1.0/Beta2/PDF


[51] D. Perez-Palacin and R. Mirandola, “Uncertainties in the modeling
of self-adaptive systems: A taxonomy and an example of availability
evaluation,” in ICPE, 2014, pp. 3–14.

[52] A. J. Ramirez, A. C. Jensen, and B. H. C. Cheng, “A taxonomy of un-
certainty for dynamically adaptive systems,” in 2012 7th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), ISSN: 2157-2321, 2012, pp. 99–108.

[53] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering,” Empirical software
engineering, vol. 14, no. 2, p. 131, 2009.

[54] S. Schneider et al., “microSecEnD: A dataset of security-enriched
dataflow diagrams for microservice applications,” in 2023 IEEE/ACM
20th International Conference on Mining Software Repositories (MSR),
ISSN: 2574-3864, 2023, pp. 125–129.

[55] S. Schneider et al., How dataflow diagrams impact software security
analysis: An empirical experiment, 9, 2024. [Online]. Available: http:
//arxiv.org/abs/2401.04446 (visited on 01/15/2024).

[56] S. Seifermann et al., “Identifying confidentiality violations in architec-
tural design using palladio,” in ECSA-C, 2021, pp. 1–4.

[57] S. Seifermann et al., “Detecting violations of access control and
information flow policies in data flow diagrams,” JSS, vol. 184,
p. 111 138, 1, 2022.

[58] D. Sobhy et al., “Evaluation of software architectures under uncer-
tainty: A systematic literature review,” ACM TOSEM, p. 50, 2021.

[59] B. Steenhoek, H. Gao, and W. Le, “Dataflow analysis-inspired deep
learning for efficient vulnerability detection,” in Proceedings of the
46th IEEE/ACM International Conference on Software Engineering,
6, 2024, pp. 1–13.

[60] X. Su, X. Yan, and C.-L. Tsai, “Linear regression,” Wiley Interdisci-
plinary Reviews: Computational Statistics, vol. 4, no. 3, pp. 275–294,
2012.

[61] J. Troya et al., “Uncertainty representation in software models: A
survey,” SoSyM, vol. 20, no. 4, pp. 1183–1213, 1, 2021.

[62] K. Tuma, R. Scandariato, and M. Balliu, “Flaws in flows: Unveiling
design flaws via information flow analysis,” in 2019 IEEE International
Conference on Software Architecture (ICSA), 2019, pp. 191–200.

[63] W. E. Walker et al., “Defining uncertainty: A conceptual basis for
uncertainty management in model-based decision support,” Integrated
assessment, vol. 4, no. 1, pp. 5–17, 2003.

[64] M. Walter, R. Heinrich, and R. Reussner, “Architectural attack prop-
agation analysis for identifying confidentiality issues,” in ICSA, 2022,
12 S.

[65] M. Walter, R. Heinrich, and R. Reussner, “Architecture-based attack
path analysis for identifying potential security incidents,” in Software
Architecture, 2023, pp. 37–53.

[66] M. Walter et al., “Architectural optimization for confidentiality under
structural uncertainty,” in Software Architecture, 2022, pp. 309–332.

[67] D. Weyns, An introduction to self-adaptive systems: A contemporary
software engineering perspective. John Wiley & Sons, 2020.

[68] D. Weyns et al., “Towards a research agenda for understanding
and managing uncertainty in self-adaptive systems,” ACM SIGSOFT
Software Engineering Notes, vol. 48, no. 4, pp. 20–36, 2023.

[69] J. Whittle et al., “Relax: Incorporating uncertainty into the specification
of self-adaptive systems,” in 2009 17th IEEE International Require-
ments Engineering Conference, IEEE, 2009, pp. 79–88.

[70] B. Williams, A. Onsman, and T. Brown, “Exploratory factor analysis:
A five-step guide for novices,” Australasian journal of paramedicine,
vol. 8, pp. 1–13, 2010.

[71] T. Xu and Y. Zhou, “Systems Approaches to Tackling Configuration
Errors: A Survey,” ACM Comput. Surv., vol. 47, no. 4, 70:1–70:41,
2015.

[72] A. G. Yong, S. Pearce, et al., “A beginner’s guide to factor analysis:
Focusing on exploratory factor analysis,” Tutorials in quantitative
methods for psychology, vol. 9, no. 2, pp. 79–94, 2013.

http://arxiv.org/abs/2401.04446
http://arxiv.org/abs/2401.04446

